К счастью для нас, взрываются звезды не очень часто – в каждой отдельно взятой галактике примерно раз в 100 лет. Однако нам повезло, что это все-таки случается: если бы не сверхновые, нас бы с вами не было. То, что каждый атом в наших организмах когда-то был частью взорвавшейся звезды, – едва ли не самый романтичный факт, касающийся Вселенной. Более того, атомы правой руки, возможно, происходят не из тех же звезд, что атомы левой. Все мы буквально дети звезд, и тела наши созданы из звездной пыли.
Откуда мы это знаем? Дело в том, что картину Большого взрыва можно экстраполировать в прошлое до того времени, когда Вселенной было около секунды от роду, и мы подсчитали, что все наблюдаемое вещество было сжато в плотную плазму, температура которой насчитывала тогда около 10 млрд градусов по шкале Кельвина. При такой температуре легко идут ядерные реакции между протонами и нейтронами, они то соединяются, то распадаются из-за дальнейших столкновений. Если проследить этот процесс по мере остывания Вселенной, можно предсказать, как часто эти первые составные части атомов будут связываться и создавать ядра атомов тяжелее водорода, то есть гелия, лития и т. д.
И тут мы обнаруживаем, что во время этого первобытного фейерверка – Большого взрыва – не формировались, в сущности, никакие ядра тяжелее лития, ядро которого занимает третье место по легкости. Мы уверены, что не ошиблись в вычислениях, поскольку наши прогнозы относительной распространенности легчайших элементов полностью совпадают с данными наблюдений. Распространенность легчайших элементов – водорода, дейтерия (тяжелый водород с дополнительным нейтроном в ядре), гелия и лития – различается на десять порядков: около 25 % всех протонов и нейтронов (по массе) находят свое место в ядрах гелия, и лишь 1 из 10 млрд нейтронов и протонов оказывается в ядре лития. На этом огромном диапазоне данные наблюдений полностью совпадают с теоретическими расчетами.
Это одно из самых известных, значительных и успешных предсказаний, которые подтверждают, что Большой взрыв и вправду был. Только горячий Большой взрыв мог породить наблюдаемую распространенность легких элементов и при этом соответствовать наблюдаемому сегодня расширению Вселенной. Я всегда держу в заднем кармане карточку, на которой написано сравнение предсказанной распространенности легких элементов с наблюдаемыми ее значениями, чтобы показывать ее каждый раз, когда мне встречается кто-то, кто не верит в Большой взрыв. Правда, до этого в спорах почти никогда не доходит, поскольку точные данные не производят должного впечатления на людей, которые заранее убеждены, что в картине что-то не так. Но я все равно ношу с собой эту карточку и чуть дальше обязательно познакомлю вас с тем, что в ней написано.
Есть люди, для которых литий важен, однако для нас с вами гораздо важнее более тяжелые ядра – углерод, азот, кислород, железо и т. д. Они в результате Большого взрыва не возникли. Создание их возможно только в раскаленных недрах звезд. А попасть к вам в организм они сумеют, только если звезда окажет им любезность и взорвется, развеяв свое содержимое по космосу, и тогда в один прекрасный день атомы встретятся, соединятся и войдут в состав маленькой голубой планетки, расположенной возле звезды по имени Солнце. За всю историю нашей Галактики в ней взорвалось около 200 млн звезд. Эти сонмища звезд пожертвовали собой, если хотите, ради того, чтобы вы когда-нибудь родились. По-моему, они подходят на роль спасителя ничуть не хуже любой другой кандидатуры.
Как показали тщательные исследования, проведенные в 1990-е гг., взрывающиеся звезды определенной разновидности, так называемые сверхновые типа Ia, обладают замечательным свойством: те из них, которые имеют бо́льшую светимость
[10], светят дольше. Эмпирически эта зависимость прослеживается очень надежно, хотя теоретически мы еще не вполне понимаем, почему это так. А значит, такие сверхновые служат прекрасными «стандартными свечами». С их помощью можно калибровать расстояния, поскольку их светимость можно определить посредством измерения, которое не зависит от расстояния. Если мы обнаружили сверхновую такого типа в далекой галактике, – а это нам по силам, потому что они очень яркие, – то можно пронаблюдать, сколько времени она светится, и установить ее светимость. А тогда, измеряя ее видимую яркость с помощью телескопа, можно точно подсчитать, на каком расстоянии от нас находится и сама сверхновая, и ее галактика. Затем, измерив красное смещение света звезд в этой галактике, можно определить ее скорость, сравнить скорость движения галактики с расстоянием до нее и сделать вывод о темпе расширения Вселенной.
Замечательно, но, если сверхновые в отдельно взятой галактике взрываются только раз в 100 лет, каков шанс, что нам доведется это увидеть? Ведь последнюю сверхновую в нашей Галактике наблюдал еще Иоганн Кеплер в 1604 г.! Говорят, что сверхновые в нашей Галактике наблюдаются только при жизни великих астрономов, а Кеплер, безусловно, заслуживает такого звания.
Сначала Кеплер был простым учителем математики в Австрии, а затем стал помощником астронома Тихо Браге, который тоже – еще до Кеплера – наблюдал сверхновую в нашей Галактике и за это получил в дар от датского короля целый остров. На основании данных о положении планет, собранных Браге более чем за 10 лет, Кеплер в начале XVII в. вывел три своих знаменитых закона движения планет:
1. Планеты движутся вокруг Солнца по эллипсам.
2. Линия, соединяющая планету с Солнцем, заметает равные площади за равные промежутки времени.
3. Квадрат периода обращения планеты по орбите прямо пропорционален кубу большой полуоси его орбиты (то есть большой полуоси эллипса – половине самой длинной из осей, проходящих через его центр).
А эти законы, в свою очередь, почти 100 лет спустя легли в основу закона всемирного тяготения Ньютона. Но это не единственное замечательное достижение Кеплера: он еще и успешно защитил собственную мать от обвинений в колдовстве, и написал, возможно, первое в истории научно-фантастическое произведение – о путешествии на Луну.
В наши дни, чтобы увидеть сверхновую, надо просто посадить по аспиранту наблюдать за каждой галактикой в небе. Ведь в космических масштабах 100 лет – это период, не слишком сильно отличающийся от среднего времени написания диссертации, а аспиранты дешевы и многочисленны. Однако, к счастью, можно обойтись и без таких крайних мер – по очень простой причине: Вселенная стара и очень велика, а поэтому редкие события происходят в ней все время.
Так что отправляйтесь как-нибудь ночью на лесную поляну или в пустыню, где хорошо видно звезды, и поднимите руку к небу, соединив большой и указательный пальцы в кружок размером примерно с десятицентовик
[11]. Нацельтесь на темный участок неба, где звезд вообще не видно. В достаточно большие телескопы, которыми сегодня пользуемся мы, астрономы на этом клочке неба могут различить около 100 000 галактик, и в любой из них – миллиарды звезд. А поскольку в каждой из этих галактик в среднем раз в 100 лет взрывается сверхновая, можно ожидать, что в каждую конкретную ночь на этом участке неба взорвется примерно три звезды.