Современная наука насчитывает их четыре: гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. К тому времени, когда Фейнман попал в магистратуру, о двух последних – в том, что касается способов, какими ядра атомов могут распадаться или воссоединяться – имелось довольно смутное представление; он сам позже помог разгадать многие их тайны. Но тогда физики даже не знали, одна это сила или две разные. Более того, они говорили о теории «мезонных ядерных сил», согласно которой протоны и нейтроны – частицы ядра, иначе говоря, – соединялись вместе, обмениваясь мезонами.
Сегодня мы знаем, что одни частицы, именуемые «глюонами», участвуют в процессе соединения, а другие частицы, называемые W +, W — и Z0, переносят индуцирующее распад слабое взаимодействие.
Уилер потратил большую часть времени, проведенного рядом с Бором, пытаясь понять, почему иногда ядра кажутся практически неделимыми, а иногда сравнительно легко разваливаются. Их теоретические модели подтверждались эмпирическими данными, но выглядели неполными.
Уилер обладал беспокойным умом и пылким воображением, поэтому он выдавал одну идею за другой, горел точно настоящая печь, работающая на энергии атомного распада. Задерживаться на одной теме надолго было для него почти невозможным, он вовсе не хотел ограничивать себя изучением лишь одной из четырех фундаментальных сил. Всю жизнь его интересы переходили от ядерных взаимодействий к электромагнетизму, затем к гравитации и снова по кругу.
В другое время идея создать унифицированную теорию всех взаимодействий привлекла бы внимание Уилера. Но тогда он видел, как Эйнштейн, работавший в соседнем Институте перспективных исследований, буквально бьется головой о стену, снова и снова, поскольку его попытки решить эту задачу ничего не дают.
Австриец надеялся, что сможет превратить общую теорию относительности в теорию всего – описать все силы геометрически и исключить тем самым необходимость в вероятностной квантовой теории.
Уилер и Эйнштейн жили в одном районе, часто пересекались на втором этаже Файн-холла до того, как институт переехал в собственное помещение, и знали друг друга хорошо. Напрасные попытки второго создать теорию всего начались в середине 20-х годов, и, погрузившись в них, Эйнштейн большей частью игнорировал современные исследования в таких областях как физика частиц или атомная физика.
Коллеги чаще смотрели на австрийца как на реликт, и немногие отваживались углубиться в таинственную реальность гравитационной теории, которая ассоциировалась с успехами в прошлом и провалами недавнего времени.
Величайший прорыв в теории гравитации, сделанный в те годы, остался по большому счету незамеченным. Статья «О безграничном гравитационном сжатии», написанная в Калифорнийском университете (Беркли) Робертом Оппенгеймером и его студентом Хартландом Снайдером, была опубликована 1 сентября 1939 года и показала, что достаточно массивная звезда после того, как выгорает ее «топливо», сжимается в компактный объект столь плотный и гравитационно мощный, что даже свет не может избежать его притяжения.
В шестидесятых годах Уилер с радостью принял эту концепцию, пустил в оборот термин «черная дыра» и сфокусировал внимание на странных выводах из первоначальной концепции.
Но в тридцатых его интерес лежал совсем в других областях.
По совпадению, работа Бора и Уилера «Механизм ядерного распада» вышла из печати в тот же день, и в ней объяснялось, почему некоторые типы атомов распадаются легче других, и появилась она в том же самом престижном журнале, что и статья Оппенгеймера – Снайдера, в Physical Review. В тот же день, как мы уже говорили, началась Вторая мировая война в Европе, а семейство Уилера перебралось в новый превосходный дом по адресу Баттл-роад, 95 в Принстоне.
Для Уилера настало время заняться новыми теоретическими проблемами, и Фейнман оказался в этом деле отличным соратником.
Все рассеивается
Еще до того, как заняться изучением ядерного распада, Уилер активно интересовался таким феноменом как «рассеяние частиц». Рассеяние происходит, когда частицы взаимодействуют друг с другом и отклоняются, подобно тому, как мячик, по которому ударили ракеткой, отскакивает в случайном на первый взгляд направлении.
Это происходит, на классическом (повседневном) и субатомном (квантовом) уровнях реальности.
Физикам нравится делать предсказания, а в случае теннисных упражнений подготовленный теоретик, имеющий данные о том, как именно соприкоснулись мячик и ракетка, сможет рассчитать, как произойдет отскок. Это классическая задача, с которой можно справиться, используя законы механики Ньютона.
Уилер больше интересовался эффектом Комптона, квантовым процессом на субатомным уровне, который не так легко объяснить с точки зрения физики Ньютона. Впервые его обнаружил американский физик Артур Комптон, получивший Нобелевскую премию за это открытие.
Эффект Комптона связан с тем, как ведет себя свет, рассеянный электроном.
Свет падает на электрон, и электрон приобретает энергию и импульс (масса, умноженная на скорость), которые тащат его в определенном направлении как брошенное метательное копье. В процессе он сам излучает свет с большей длиной волны (расстояние между пиками), чем была у исходного, и тот распространяется под углом, отличным от движения электрона.
Для видимого света длина волны соотносится с цветом, так что вторичный свет будет иметь иной оттенок, чем оригинальный, сдвигаясь к красному концу спектра. Обычно эффект Комптона возникает при работе с невидимыми рентгеновскими лучами, и при этом получаются те же рентгеновские лучи, только с большей длиной волны.
Важность эффекта Комптона в том, что квантовая теория точно предсказывает разницу между начальной и конечной длиной волны, и угол рассеяния между электроном и испущенным светом тоже. Это достижение раскрывает сущность квантовой гипотезы, впервые предложенной Максом Планком в 1900 году и доработанной Эйнштейном в 1905-м, которая носит название «фотоэлектрический эффект».
Термин «квант» сам по себе обозначает «порция», и возник он потому, что свет выделяется небольшими порциями, или квантами, энергии. Мельчайшие единицы света – волна делится на частицы, словно засунутая в коробку пружина – именуются фотонами. Поскольку большая часть светового спектра невидима, за исключением участка от красного до фиолетового, то большинство существующих фотонов точно так же невидимы.
Фотоны служат частицами обмена в электромагнитном взаимодействии, всякий раз, когда заряженная частица, такая как электрон, притягивает или отталкивает другую заряженную частицу с помощью электричества или магнетизма, фотон прыгает между ними. Без такого обмена заряды будут просто игнорировать друг друга, и не будет ни притяжения, ни отталкивания.
Так что если ваш магнитик со щелчком прилипает к холодильнику, то благодарите фотоны (скорее невидимые, чем оптические) за их роль переносчиков электромагнитной энергии.