Книга Сверхдержавы искусственного интеллекта , страница 28. Автор книги Кай-фу Ли

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Сверхдержавы искусственного интеллекта »

Cтраница 28

Скорость совершенствования ИИ также заставляет исследователей оперативно делиться своими результатами. Многие ученые, работающие с ИИ, не пытаются совершить фундаментальные прорывы, сравнимые с открытием глубокого обучения, – они занимаются тем, что постоянно дорабатывают самые лучшие алгоритмы. Эта тонкая настройка регулярно помогает устанавливать новые рекорды точности при решении задач в области распознавания речи или визуальной идентификации. Когда исследователи соревнуются между собой, победителя определяют именно такие рекорды, а не успех разработанных продуктов или экономические результаты. И когда ученый устанавливает новый рекорд, он, конечно, хочет известности и признания. Но в современной науке все происходит очень быстро, и многие исследователи опасаются, что, пока они будут ждать публикации в журнале, их рекорд превзойдут и он останется незарегистрированным. Поэтому они стремятся к скорейшей публикации и выбирают для нее такие сайты, как www.arxiv.org – онлайн-хранилище научных статей. Сайт позволяет исследователям мгновенно зафиксировать свои достижения с указанием времени и места.

В мире, изменившемся после победы AlphaGo, китайские студенты, исследователи и инженеры стали одними из самых жадных читателей arxiv.org. Они тщательно просматривают этот сайт в поисках новых методов, впитывая все, что могут предложить самые выдающиеся исследователи в мире. Наряду с академическими публикациями китайские студенты, изучающие ИИ, также отслеживают, переводят и снабжают субтитрами лекции ведущих деятелей науки в этой области, таких как Ян Лекун, Себастьян Трун из Стэнфорда и Эндрю Ын. После десятилетий, проведенных за чтением устаревших учебников в полутьме, эти будущие ученые упиваются свободным доступом к работам, отражающим глобальные научные тенденции.

Сообщество ИИ Китая образует гигантские группы и создает мультимедийные платформы в WeChat для подробного обсуждения всего самого нового в области ИИ. Тринадцать новых медиакомпаний, появившихся только для того, чтобы освещать этот сектор науки, предлагают своей аудитории отраслевые новости, экспертный анализ и открытый диалог. Эти информационные агентства могут похвастаться более чем миллионом зарегистрированных пользователей, а половина из них пользуется венчурным финансированием, что поднимает оценку каждого такого агентства выше 10 млн долларов. Я сам участвую в академических дискуссиях и вхожу в число пятисот членов специальной группы в WeChat, которая собирается каждую неделю, чтобы обсудить свежие публикации об исследованиях в области ИИ. Чат-группа гудит сотнями сообщений в день: серьезные вопросы по научной статье, обсуждаемой на этой неделе, скриншоты последних достижений участников в работе над алгоритмами и, конечно же, множество эмодзи. Но китайские практики не просто пассивно приобщаются к мудрости западного мира. Они теперь и сами вносят свой вклад в экосистему, и размер этого вклада стремительно растет.

Что делать с конференцией?

У Ассоциации по продвижению искусственного интеллекта (AAAI) возникла проблема. Эта уважаемая организация уже целых три десятилетия проводила важнейшие всемирные конференции, посвященные ИИ, но в 2017 году мероприятие оказалось под угрозой срыва из-за того, что его даты совпали с китайским Новым годом. Несколько лет назад это не вызвало бы осложнений. Большинство докладчиков составляли американские, британские и канадские ученые, а группа китайских исследователей была малочисленной. Но на участие в конференции 2017 года пришло почти равное количество заявок от исследователей из Китая и Соединенных Штатов, и возникла опасность, что половина желающих не сможет присутствовать на ней из-за главного для китайской культуры праздника.

«Ведь никто не стал бы назначать конференцию на Рождество, – сказал президент Ассоциации в интервью журналу Atlantic. – Нам пришлось срочно принять меры и перенести конференцию на неделю вперед» [43].

Китайские разработчики внесли свой вклад в развитие ИИ на всех уровнях, от тонких настроек существующих моделей до внедрения принципиально нового подхода к построению нейронных сетей. При просмотре выдержек из академических исследований растущее влияние китайских ученых становится очевидным. Один из аналитических обзоров Sinovation Ventures, посвященных библиографии статей, которые были опубликованы в сотне лучших журналов или озвучены на конференциях об ИИ с 2006 по 2015 год, показал, что за это время доля работ авторов с китайскими именами выросла почти вдвое – с 23,2 % до 42,8 % [44]. В это число входят и некоторые авторы китайского происхождения, работающие за рубежом, – например, американские исследователи-китайцы, не поменявшие имя на английское. После проведения уточняющего опроса оказалось, что подавляющее большинство авторов – сотрудники научно-исследовательских организаций Китая. Недавний подсчет публикаций в научно-исследовательских институтах мирового масштаба также подтвердил эту тенденцию. В результате в рейтинге ста наиболее часто публикующих свои материалы научно-исследовательских институтов, работающих в области ИИ, с 2012 по 2016 год Китай оказался вторым, уступив лишь Соединенным Штатам, а среди элитных учебных заведений Университет Цинхуа стоял даже выше Стэнфордского университета, превосходя его по количеству публикаций [45]. Эти работы в значительной мере относились к эпохе до победы AlphaGo, после которой Китай принялся активно растить новых молодых исследователей. В ближайшие годы новая волна молодых аспирантов выведет исследования ИИ в Китае на новый уровень. Ведь в конечном счете вклад ученых в науку не сводится к количеству документов и статей. С приходом глубокого обучения в стране был сделан ряд важнейших достижений в области нейронных сетей и компьютерного зрения. Многие их авторы прежде работали в Microsoft Research China – подразделении корпорации, основанном мною в 1998 году. Позже, будучи переименованным в Microsoft Research Asia, оно продолжило работу и вырастило более пяти тысяч исследователей ИИ, включая топ-менеджеров Baidu, Alibaba, Tencent, Lenovo и Huawei.

В 2015 году команда Microsoft Research Asia одержала победу на всемирном конкурсе по распознаванию изображений ImageNet. Алгоритм, обеспечивший команде превосходство, назывался ResNet: он смог идентифицировать и классифицировать изображения со 100 000 фотографий в 1000 различных категорий, доля ошибок составляла всего 3,5 % [46]. Два года спустя, когда специалисты DeepMind Google построили AlphaGo Zero – обновленную версию AlphaGo, обучающуюся только на играх с самой собой, они использовали ResNet в качестве одного из своих основных технологических строительных блоков. Китайские исследователи, создавшие ResNet, оставались в Microsoft недолго. Из четырех авторов разработки ResNet один присоединился к исследовательской группе Яна Лекуна в Facebook, а остальные трое основали стартапы в области ИИ в Китае или присоединились к чужим. Один из таких стартапов – Face++ – быстро стал мировым лидером в области распознавания лиц и изображений. В соревновании по распознаванию изображений COCO 2017 команда Face++ заняла первые места в трех из четырех важнейших категорий, опередив лучшие группы специалистов из Google, Microsoft и Facebook.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация