Книга Сверхдержавы искусственного интеллекта , страница 49. Автор книги Кай-фу Ли

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Сверхдержавы искусственного интеллекта »

Cтраница 49
О чем говорят исследования

Прогнозы о масштабах безработицы, которую может вызвать развитие ИИ, опубликованы многими экономистами и консалтинговыми компаниями по всему миру. В зависимости от того, какая модель используется исследователями, оценки варьируются от пугающе пессимистичных до нейтральных. Далее я даю краткий обзор литературы и методов, уделяя особое внимание тем из них, которые вызвали дебаты. Китайскому рынку до сих пор не было посвящено достаточно глубоких исследований, поэтому я в основном рассматриваю работы, оценивающие потенциал автоматизации в США, а затем экстраполирую полученные результаты на Китай.

В 2013 году двое ученых из Оксфордского университета положили начало целой серии исследований, выпустив зловещий прогноз, согласно которому 47 % рабочих мест в США могут перестать существовать уже в течение последующих 10 или 20 лет из-за автоматизации [81]. Для начала авторы статьи – Карл Бенедикт Фрей и Майкл Осборн – задали экспертам по машинному обучению вопрос, как они оценивают вероятность автоматизации 70 профессий в ближайшие годы. Затем, совмещая данные ответов с перечнем основных «узких мест» в машинном обучении (приведенным в секторах «Безопасная зона» на диаграммах в предыдущем разделе), Фрей и Осборн с помощью вероятностной модели получили прогноз того, насколько доступными для автоматизации окажутся еще 632 профессии. Результаты показали, что почти половина рабочих мест в США в ближайшие десятилетия окажется в зоне «высокого риска замены», и вызвали настоящий ажиотаж. Фрей и Осборн были осторожны и снабдили свое заключение многочисленными оговорками. К тому же речь в нем шла о том, какие специальности будет технически возможно заменить машинами, а не о том, сколько из них действительно исчезнут. Однако за исследованием последовал шквал публикаций в прессе, в которых этот важный момент не упоминался, зато тиражировалось заявление, что половина всех трудящихся скоро останется без работы.

Вскоре последовало еще одно громкое исследование. В 2016 году трое экономистов из Организации экономического сотрудничества и развития (ОЭСР) использовали альтернативную модель и получили оценку, казалось бы, прямо противоречившую оксфордскому исследованию. Согласно их выводам, высокий риск вытесняющей автоматизации в Соединенных Штатах существовал всего лишь для 9 % рабочих мест [82]. Откуда же взялся такой огромный разрыв? Исследователи не согласились с подходом Осборна и Фрея, при котором оценка основывалась на «автоматизируемости профессии». Команда ОЭСР исходила из предпосылки, что автоматизированы будут не сами профессии, а, скорее всего, довольно конкретные задачи. Группа ОЭСР утверждала, что многие задачи, выполняемые представителями большинства профессий, нельзя алгоритмизировать, например совместную работу с коллегами в группах, личное общение с клиентами и т. п.

Исследователи предложили подход, при котором профессиональная деятельность раскладывалась на многочисленные компоненты и каждый из них оценивался с точки зрения возможностей его автоматизации. В этой модели работа, например, ассистента по заполнению налоговых деклараций, классифицируется не как одно занятие, а как серия задач, поддающихся автоматизации (обзор поступивших документов, расчет максимальных отчислений, поиск несоответствий в документах и т. д.), и тех, которые ей не поддаются (встречи с новыми клиентами, доведение принятых решений до каждого из клиентов и т. д.). Затем группа ОЭСР применила вероятностную модель и расcчитала, какой процент рабочих мест может оказаться «в зоне высокого риска» (если автоматизации поддаются не менее 70 % профессиональных задач). Как уже говорилось, расчеты показали, что в США в эту зону попадают всего 9 % трудящихся. Применив ту же модель для 20 других стран, ученые из ОЭСР установили, что доля профессий с высоким уровнем риска будет равна 6 % в Корее и 12 % в Австрии. Казалось, можно не волноваться: исследование подтвердило, что слухи о грядущей безработице сильно преувеличены. Но, как и следовало ожидать, дебаты не утихали. Подход ОЭСР, основанный на автоматизации задач, стал преобладающим среди исследователей, однако не все они согласились с оптимистичными выводами, изложенными в докладе. В начале 2017 года исследователи из PwC, пользуясь тем же подходом, провели собственный анализ и обнаружили, что к началу 2030-х годов в Соединенных Штатах высокому риску уничтожения из-за автоматизации подвергнется 38 % рабочих мест [83]. Расхождение с результатом в 9 %, полученным учеными из ОЭСР, которые просто использовали для расчетов немного другой алгоритм, было значительным. Исследователи из PwC, как и их предшественники, вскоре заявили, что их прогноз касается технических возможностей автоматизации, а на самом деле изменения на рынке труда будут протекать более мягко благодаря нормативной, правовой и социальной динамике.

Исследователи из Глобального института McKinsey попытались найти некое усредненное решение. Я помогал институту в проведении его исследований, связанных с Китаем, и стал соавтором научной статьи, посвященной китайскому цифровому ландшафту. Используя все тот же подход, основанный на разделении каждой профессии на ряд задач, команда компании McKinsey подсчитала, что около 50 % рабочих задач по всему миру уже автоматизировано [84]. Для Китая этот процент был несколько выше – 51,2 %, а для США – немного ниже – 45,8 %. Поэтому, когда дело дошло до оценки фактических последствий для рынка труда, исследователи McKinsey были менее пессимистичными. При быстром внедрении методов автоматизации (сценарий, наиболее сопоставимый с приведенными выше результатами) к 2030 году может быть автоматизировано 30 % профессиональных задач во всем мире, но только 14 % трудящихся вынуждены будут поменять специальность. Итак, о чем же говорит нам проведенный обзор научных статей? Оценки экспертов относительно сокращения рабочих мест в Соединенных Штатах варьируются в пределах от 9 % до 47 %. И даже если придерживаться подхода, основанного на автоматизации задач, то все равно останется разброс в диапазоне от 9 % до 38 %, то есть от относительного благополучия до самого настоящего кризиса. Такая разница в оценках не должна вызывать у нас недоумения. Однако нам стоит подумать о том, чему эти исследования могут научить нас – и чего, они, вероятно, не отражают.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация