В этой главе излагается одна идея, позволяющая прийти к возможному ответу на этот вопрос, “если соизволят выслушать мой ответ на этот вопрос и заключающуюся в нем необузданную, возможно, догадку”
[108]. Я не уверен, справедлив ли этот ответ, но идея мне очень нравится
[109]. Она многое позволяет прояснить.
Наше дело крутиться!
Каковы бы мы, человеческие существа, ни были, мы остаемся частью природы, фрагментом колоссальной космической фрески, одним из фрагментов среди множества других.
Между нами и всем остальным миром есть определенные физические взаимодействия. Очевидно, далеко не все переменные, описывающие мир, зависят от нас и от той части мира, к которой мы принадлежим. Что-то подобное справедливо будет сказать лишь о мельчайшей части всех этих переменных; большинство же из них не взаимодействуют с нами. Мы для них неведомы, а они неведомы для нас. Поэтому различные конфигурации мира кажутся нам тождественными. Физическое взаимодействие между мной и стаканом воды – двумя фрагментами этого мира – никак не зависит от движения конкретных молекул воды. Точно так же взаимодействие между мной и далекой галактикой – двумя фрагментами этого мира – не позволит мне узнать, что в точности там в ней происходит. Из-за этого наша картина мира размыта. Из-за того что мы слепы ко многим переменным, описывающим взаимодействие между нами и той частью мира, с которой мы соотносимся и которой принадлежим.
Эта размытость лежит в основе теории Больцмана
[110]. Из этой размытости рождаются понятия тепла и энтропии, а с этими двумя связаны все явления, ответственные за течение времени. Энтропия системы, в частности, – это прямое проявление размытости картины мира. Энтропия зависит от того, что именно я не вижу, так как этим определяются неразличимые конфигурации. Одна и та же микроскопическая конфигурация может оказаться высокоэнтропийной по отношению к одному способу размытия и низкоэнтропийной – по отношению к другому. А само размытие, в свою очередь, – это отнюдь не ментальная конструкция: она зависит от реального физического взаимодействия, и поэтому энтропия системы зависит от того, в каких физических взаимодействиях эта система участвует
[111].
Зависимость энтропии от того, как именно размывается картина, не означает ее произвольности или субъективности. Это означает, что энтропия относительна, как, например, скорость. Скорость какого-нибудь объекта не зависит только от самого этого объекта: это свойство объекта по отношению к другому объекту. Скорость ребенка, бегущего по вагону поезда, имеет одно значение по отношению к поезду (около одного шага в секунду) и совсем другое по отношению к земле (около сотни километров в час). Если мама закричит ему “Стой!”, это вовсе не будет означать, что она хочет, чтобы он выпрыгнул в окно и остановился относительно земли. Она хочет, чтоб он остановился относительно поезда. Скорость – это свойство одного тела по отношению к другому. Это относительная величина.
Такова же и энтропия. Энтропия А по отношению к В определяется числом различных конфигураций А, что физические взаимодействия между А и В не различают.
Как только этот момент, очень часто оказывающийся причиной всевозможной путаницы, будет прояснен, обнаружится очень соблазнительная разгадка тайны стрелы времени.
Энтропия всего мира не зависит только от конфигурации самого мира, она зависит также от того, как именно размыта картина мира для нас, а значит – от того, каковы те переменные, посредством которых мы, как часть мира, участвуем во взаимодействиях.
Изначальная энтропия мира нам кажется очень низкой. Но дело тут не в самом мире, а в том подмножестве его переменных, посредством которых мы, как физические системы, взаимодействуем. И это в отношении такого драматического размытия картины мира, которую порождает наше с ним взаимодействие, в отношении того крошечного множества переменных, в терминах которых мы описываем мир, энтропия Вселенной оказывается низкой.
Именно это, то есть этот самый настоящий факт, открывает неожиданную возможность: это не Вселенная пребывала в какой-то особой конфигурации в прошлом, это мы сами и наше взаимодействие со Вселенной какие-то особенные. Это мы определяем какие-то особые свойства макроскопического описания. Низкая энтропия Вселенной в момент ее рождения, а потому и стрела времени, обязана своим происхождением нам, а не Вселенной. Такова идея.
Подумайте об одном из самых очевидных и грандиозных явлений – суточном вращении небосвода. И о непосредственной и чудесной характеристике, какую только можно дать Вселенной вокруг нас, – она вращается. Но в самом ли деле это характеристика Вселенной – вращаться? Нет. Прошли тысячелетия, но в конце концов мы все-таки разобрались с вращением небес: мы поняли, что вращаемся сами, а не вся Вселенная. Вращение небес – не более чем своеобразная перспектива, возникающая из-за того, что мы движемся каким-то очень специальным образом, но это вовсе не таинственное свойство динамики Вселенной.
И со стрелой времени должна быть какая-то такая же история. Низкая начальная энтропия Вселенной должна возникать из-за того, что мы – физическая система, частью которой мы являемся, – взаимодействуем со Вселенной каким-то очень специальным образом.
Как же может какая-то особая форма взаимодействия между нами и всем остальным миром оказаться причиной низкого исходного значения энтропии?
Очень просто. Возьмите колоду из двенадцати карт – шесть красных и шесть черных. Разложите карты так, чтобы шесть красных были сверху. Потом немного перетасуйте колоду и посчитайте, сколько черных карт окажется среди первых шести, выложенных сверху. До того как вы перетасовали колоду, не было ни одной. По мере перемешивания их количество растет. Это простейший пример возрастания энтропии. В начале игры число черных карт среди первых шести равнялось нулю (энтропия была низка), потому что игра начиналась с какой-то специальной конфигурации.