Чтобы воспользоваться географической картой, недостаточно просто ее разглядывать, надо знать, где мы находимся в репрезентации, этой картой представленной. Чтобы понять наше восприятие пространства, недостаточно думать о ньютоновском пространстве, надо помнить, что мы видим это пространство изнутри, что мы где-то в нем локализованы. Чтобы понять время, недостаточно думать о нем как о стороннем, надо понимать, как мы в каждое мгновение своего восприятия локализованы во времени.
Мы наблюдаем Вселенную изнутри, взаимодействуя лишь с ничтожной частью бесконечного числа космических переменных. Мы видим ее размытый образ. Эта размытость подразумевает, что та динамика Вселенной, с которой мы взаимодействуем, управляется энтропией, служащей мерой степени размытости. Она служит мерой чего-то, относящегося скорее к нам, чем к космосу.
Универсальный человек в центре космоса. Иллюстрация из Liber Divinorum Operum Хильдегарды Бингенской (1164–1170)
Мы опасно сближаемся сами с собой. Кажется, мы слышим Тиресия, предостерегающего Эдипа: “Остановись! Иль встретишься с собой…”
[113]. Или Хильдегарду Бингенскую, искавшую абсолют в XII веке и в итоге поместившую “универсального человека” в центр космоса.
Но прежде чем мы перейдем к этому самому “мы”, нужна еще одна глава, следующая, чтобы проиллюстрировать, как рост энтропии – возможно, всего лишь благодаря явлению перспективы – способен дать начало всей безбрежной феноменологии времени.
Оглянемся и бросим взгляд на проделанный в последних двух главах неровный путь в надежде, что еще не все мои читатели потеряны: на фундаментальном уровне мир представляет собой множество событий, не упорядоченных во времени. В них реализованы связи между физическими переменными, среди которых нет априорно выделенных. Всякая часть мира взаимодействует с малой частью переменных, смысл которых в том, что они определяют “состояние мира по отношению к данной подсистеме”. Для всякой части мира, следовательно, есть неразличимые конфигурации всего остального мира. Они подсчитываются энтропией. Состояния, которым соответствует большее число неразличимых конфигураций, встречаются чаще, и, таким образом, состояния с максимальной энтропией совокупно описывают “весь остальной мир”, каким он видится данной подсистемой. С этими состояниями естественно связывается поток, по отношению к которому они находятся в равновесии. Параметр этого потока – термическое время
[114].
Среди бесчисленных частей мира найдутся такие особенные, для которых у состояний, ассоциированных с одним из концов термического времени, исключительно мало соответствующих им конфигураций. Для этих систем поток времени не симметричен: энтропия возрастает. Это возрастание мы и воспринимаем как течение времени.
Я вовсе не уверен, что изложенная история правдоподобна, но лучшей не знаю. Иначе остается лишь признать как данность наблюдаемый факт, что энтропия была очень низкой в начальный момент жизни нашей Вселенной, и на этом остановиться
[115].
Есть закон ΔS ≥ 0, сформулированный Клаузиусом, – с его расшифровки начал Больцман, служивший нам сейчас провожатым. Потеряв этот закон из виду в поисках фундаментальных законов природы, мы вновь обрели его как эффект перспективы для определенных подсистем. Продолжим дальше с этого места.
Глава 11
Что возникает из особых свойств
Зачем кедр высокий
и тополь сребристый,
сплетаясь ветвями,
дают эту тень нам прохладную?
Зачем быстрая влага
рисует ясные вихри
в прихотливом потоке?
(ii 9)
Миром управляет не энергия, а энтропия
В школе мне всегда говорили, что все в мире зависит от энергии. Нам приходится добывать энергию из нефти, забирать ее у Солнца или получать, расщепляя атомные ядра. Энергия заставляет крутиться моторы, расти растения, она будит нас по утрам полными жизни.
Но тут что-то не сходится. Энергия – как мне всегда говорили в школе – сохраняется. Она не возникает и не исчезает бесследно. Если она сохраняется, то отчего нам приходится все время производить ее заново? Почему мы не можем все время использовать одну и ту же? Правда заключается в том, что энергии у нас в избытке, но мы ее не потребляем. Вовсе не энергия нужна, чтобы заставить мир крутиться. Нужна низкая энтропия.
Всякая энергия (механическая, химическая, электрическая или потенциальная) превращается в термическую энергию, то есть в тепло, идущее на нагрев холодных тел, откуда ее уже не так-то просто извлечь, чтобы использовать заново для взращивания растения или раскручивания мотора. В этом процессе энергия остается той же, но энтропия возрастает, и вот ее-то уже не вернуть назад. Второй закон термодинамики не позволяет.
Мир крутится не благодаря источникам энергии, а благодаря источникам низкой энтропии. Без низкой энтропии энергия бы растеклась равномерным теплом – и мир пришел бы в состояние теплового равновесия, где больше нет различия между прошлым и будущим и поэтому ничего не происходит.
Вблизи Земли у нас есть мощный источник низкой энтропии – Солнце. Солнце шлет нам горячие фотоны. Земля излучает тепло в черное небо, избавляясь от более холодных фотонов. Энергия, которая уходит, более или менее равна той, которая приходит, так что в процессе этого обмена энергия не накапливается (если она накапливается, то это катастрофа для нас – потепление климата). Но на каждый прибывающий горячий фотон Земля отдает десяток холодных, потому что один горячий фотон приносит от Солнца столько же энергии, сколько уносит десяток холодных фотонов, излучаемых Землей. У горячего фотона энтропия ниже, чем у десятка холодных, потому что число конфигураций у одного фотона (горячего) меньше числа конфигураций десяти фотонов (холодных). Следовательно, для нас Солнце – богатейший постоянный источник низкой энтропии. В нашем распоряжении изобилие низкой энтропии, и именно она дает возможность животным и растениям размножаться, а нам – собирать моторы, возводить города, придумывать что-то новое и писать книги вроде этой.