Книга Выжить в пандемию, страница 12. Автор книги Майкл Грегер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Выжить в пандемию»

Cтраница 12

Есть множество описаний вариантов обоих ферментов. На сегодняшний день известно восемнадцать типов гемагглютининов (с H1 по H18 соответственно) и одиннадцать типов нейраминидаз (N1-N11). По тому, какие именно типы ферментов присутствуют на поверхности вируса, и различаются штаммы гриппа. Название «H5N1» обозначает, что вирус обладает гемагглютинином пятого типа, согласно классификации ВОЗ, а также «шипиками» нейраминидазы первого.310

На то, чтобы нейраминидазы выпирали с самой поверхности, у вируса есть веская причина: описанный в вирусологии как «напоминающий по форме гриб на непропорционально длинной ножке»,311 этот фермент, словно мачете, рассекает слой слизи и растворяется в ней, чтобы атаковать укрытые слизью клетки дыхательного тракта,312 а затем уступить дорогу захватывающим власть шипикам гемагглютинина.

Как и белковые шипики, покрывающие коронавирусы, гемагглютинин также работает отмычкой, с помощью которой вирус гриппа проникает внутрь клеток. Клетки нашего тела покрыты сахарами. Внешняя мембрана, обволакивающая каждую клетку, усеяна гликопротеинами – комплексами сахаров и белков, выполняющих разные функции, включая межклеточную коммуникацию. Гемагглютинин вируса прилепляется с одним из сахаров с поверхности клетки, называемым сиаловой кислотой (от греческого σίαλον – слюна). Поэтому гемагглютинин так и был назван: когда вирус инфлюэнцы смешивается с кровью, сотни гемагглютининовых шипиков, расположенных на каждом вирионе, тут же образуют перекрестные связи между множеством эритроцитов, покрытых сиаловой кислотой, все плотнее слепляя их вместе. Происходит агглютинация, то есть склеивание красных кровяных телец (от латинского agglūtināre – приклеивать и греческого αίμα – кровь).313

Такой маневр вынуждает клетку заглотить вирус. Как в классическом скетче о «сухопутной акуле» из вечерних шоу, вирус дурачит клетку, позволяющую ему войти. [13] Оказавшись внутри, вирус захватывает власть, обращая клетку в вирусопроизводящую фабрику. Сначала вирус измельчает ДНК нашей клетки, полностью перепрофилируя ее на производство большого количества вирусов; в итоге это приводит к смерти клетки – из-за вируса она пренебрегает собственными нуждами.314 Но почему вирус научился убивать клетку, то есть сжигать собственную фабрику? Зачем же кусать руку, которая тебя кормит? Почему бы просто не поживиться половиной клеточного белка и сохранить ее живой, чтобы она произвела еще больше вирусов? В конце концов, чем больше клеток умрет, тем скорее иммунная система будет оповещена о присутствии в организме вируса.

Все просто: вирус убивает просто потому, что именно так он распространяется.

Существует множество мифов и легенд о заражении гриппом. На деле же умирающие клетки дыхательных путей провоцируют воспалительную реакцию, вызывающую рефлекторный кашель. Вирус пользуется собственными защитными механизмами организма для заражения новых носителей. При кашле выделяется несколько миллиардов свежепроизведенных вирусов, которые вылетают на скорости свыше ста километров в час.315 При чихании скорость превышает сто пятьдесят километров в час,316 а бактерии выбрасывается более чем на десять метров.317 Вот почему важно прикрывать рот рукой при кашле или чихании, иначе даже дистанция в несколько метров не сможет защитить от заражения.

Способность вирусной нейраминидазы разжижать слизь позволяет образовывать мельчайшие аэрозольные капли,318 которые настолько легки, что могут зависать в воздухе до нескольких минут, прежде чем осесть на землю.319 При каждом кашле образуется около сорока тысяч подобных капель,320 и каждая микрокапля может содержать многие миллионы вирусов.321 Нетрудно теперь понять, как легко было такому вирусу распространиться по всей планете.

Еще одним преимуществом для распространения вирусов является площадь дыхательных путей, позволяющая вирусу убивать клетки одну за другой, тем самым производя огромное количество новых вирусов, не убивая носителя чересчур быстро. Вирус превращает наши легкие в заводы по изготовлению вируса гриппа. Вирусы же, поражающие другие жизненно важные органы, например печень, вынуждены быстро размножаться, чтобы успеть до того, как отказавший орган повлечет за собой смерть носителя, а с ним и вируса.322

В отличие от прочих вирусов, скажем герпеса, прилагающих массу усилий, чтобы не убивать клетки и не навлечь на себя гнев иммунной системы, вирус гриппа подобной возможности лишен. Он должен убивать, чтобы жить и распространяться. Во что бы то ни стало он должен заставить нас кашлять, и чем сильнее, тем лучше.

Задатки убийцы

Как только первая линия тройного защитного пояса против инфекций прорвана, вся надежда на «врожденные» защитные механизмы иммунной системы. Здесь работают похожие на Пакмана клетки, называемые макрофагами (по-гречески «большие пожиратели»). Они патрулируют организм, съедая любые патогенные микроорганизмы, которые сумеют настичь. Любой вирус, пойманный вблизи наших клеток, может оказаться оперативно сожран. Но как только вирусу удастся вторгнуться в клетку, он отлично укроется от патрулирующих стражей. Тут наступает черед взяться за оружие системе интерферонов – другому важному отряду наших врожденных иммунных механизмов.

Интерферон является одним из многочисленных цитокинов – белков-передатчиков, производимых атакованной клеткой для противодействия воспалению и предупреждения соседних клеток о наступлении вражеского вируса.323 Интерферон работает в качестве системы раннего оповещения, распознавая вирусную угрозу и в случае, если соседние клетки окажутся уже зараженными, активируя замысловатый механизм самоуничтожения клетки. Интерферон дает команду клетке покончить с собой при первых признаках заражения, чтобы уничтожить и вирус. Крепко сцепившись с зараженным товарищем, клетке надлежит грудью броситься на готовую разорваться гранату, жертвуя собой ради защиты организма. Подобный приказ – не шутка: ложная тревога может привести к губительным для организма последствиям. Интерферон все равно сорвет чеку, но клетка бросится на гранату лишь тогда, когда уверена, что заражение есть.

Все работает примерно так: ученый, разрабатывающий новый антибиотик (от греческого ἀντί – против, βίος – жизнь), должен выявить определяющие различия между живыми клетками организма и патогеном, позволившие бы противодействовать последнему. Что-то вроде химиотерапии, направленной на уничтожение раковых клеток без вреда живым и здоровым клеткам. Очевидно, хлорка или формальдегид прекрасно умеют расправляться с бактериями и вирусами, но ясно, и отчего мы не применяем их в лечении простудных заболеваний, – вместе с помощью они нанесут и непоправимый вред организму.

Большинство антибиотиков вроде пенициллина нацеливаются на клеточную стенку бактерии; поскольку клетки живых существ стенок не имеют, препарат может очистить организм от бактерий, не причинив ему при этом особого вреда. Патогенные грибы также не имеют клеточных стенок, но в их клеточных мембранах содержатся жировые соединения, по которым и бьют противогрибковые препараты. Вирусы же не имеют ни клеточных стенок, ни грибковых соединений, а поэтому против них бесполезны и антибиотики, и противогрибковые средства. В вирусе нечего выделить, а значит, нечего и атаковать. Конечно, есть РНК или ДНК вируса, но ведь это тот же самый генетический материал, из которого устроены и наши собственные клетки.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация