И все же маятник смог вновь удивить ученых, став пробным камнем, каким в свое время он оказался и для Галилея, совершившего в результате переворот. Аристотель, наблюдая за маятником, видел в нем груз, который тщетно стремится достигнуть земли и качается взад и вперед потому, что стержень ограничивает его движение
[68]. Современному ученому сказанное покажется наивным. Ему, связанному классическими представлениями о движении, инерции, силе тяжести, довольно сложно оценить господствовавшие некогда убеждения, которые сформировались под влиянием аристотелева понимания маятника. По Аристотелю же, движение тел есть не физическая величина или результат действия силы, а скорее изменения, подобные тем, что происходят по мере роста человека, – падающий груз просто стремится к своему естественному состоянию, которое достижимо, если объект предоставлен самому себе. В контексте своего времени точка зрения Аристотеля имела смысл. С другой стороны, Галилей, изучая маятник, подметил некую упорядоченность, доступную измерениям; чтобы объяснить ее, необходимо было мыслить совершенно по-новому, воспринимая объекты в движении. Преимущество Галилея над древними греками заключалось вовсе не в том, что у него были более точные данные. Напротив, его идея – приставить к маятнику наблюдателей и подсчитать число колебаний за сутки – предполагала проведение трудоемкого эксперимента. Галилей увидел упорядоченность в движении маятника потому, что у него уже была теория, предсказывавшая данный факт. Он понял то, чего не постиг Аристотель: движущийся объект стремится продолжать движение, а изменения скорости или направления объясняются лишь вмешательством внешней силы, например силы трения.
На самом деле Галилей настолько подпал под власть своих умопостроений, что увидел упорядоченность, которой не было.
По его убеждению, маятник определенной длины не только показывает точное время, но и обнаруживает независимость периода колебаний от угла отклонения. Проще говоря, маятник с бо́льшим углом отклонения проходит больший путь, но делает это быстрее. Другими словами, период колебаний маятника не зависит от его амплитуды: «Если два человека начнут считать число колебаний и один будет считать те, что имеют широкий угол, а второй – колебания с небольшим углом, то обнаружится, что после десятков, даже сотен движений маятников их данные будут полностью совпадать, не различаясь и на доли единицы»
[69]. Галилей сформулировал это утверждение, описывая некий эксперимент, однако убедительности ему придала теория – причем такой, что оно до сих пор входит прописной истиной в большинство курсов физики высших школ
[70]. Тем не менее данный постулат неверен: упорядоченность, замеченная Галилеем, лишь приблизительна, так как изменяющийся угол движения отвеса привносит в уравнения едва заметный элемент нелинейности. При малых амплитудах погрешность почти не проявляется, но она существует и поддается измерению, даже в таком грубом эксперименте, как описал Галилей.
Хотя небольшими эффектами нелинейности можно пренебречь, экспериментаторы быстро осознали, что живут в несовершенном мире. Со времен Галилея и Ньютона поиски упорядоченности в опытах отличались особой основательностью. Любой экспериментатор ищет неизменные или нулевые величины, но это значит, что он пренебрегает той крошечной долей беспорядочного, что вмешивается в четкую картину результатов. Если химик понимает из эксперимента, что в один день соотношение двух веществ составляет 2,001, в другой – 2,003, a в третий – уже 1,998, то весьма неосмотрительно с его стороны будет не подыскать теорию, объясняющую, что истинное соотношение равно два к одному.
Для получения своих стройных результатов Галилей был вынужден игнорировать известные ему нелинейные эффекты – трение и сопротивление воздуха. Последнее является весьма досадной неприятностью, осложнением, которое необходимо устранить, чтобы постичь сущность новой механики. Падает ли птичье перышко так же быстро, как камень? Как показывает опыт, скорость их падения различна. Легенда о Галилее, бросавшем шары с Пизанской башни, – это история о том, как изменилась интуиция ученых благодаря изобретению идеального научного мира, где упорядоченность можно отделить от погрешностей опыта.
Отделив действие силы тяжести на тело определенной массы от действия сопротивления воздуха – что стало блестящим достижением научной мысли, – Галилей вплотную приблизился к сути инерции и измерению количества движения. Все же в реальном мире маятники ведут себя так, как описано в парадигме Аристотеля: они останавливаются.
Закладывая основу грядущей смены парадигм, физики столкнулись с тем, что принимали за пробел в знаниях о простых системах вроде маятника. К началу XX века диссипативные
[71] процессы, к примеру трение, были уже изучены и учитывались в уравнениях. На занятиях студентам рассказывали, что нелинейные системы, как правило, не имеют решения, и это вполне соответствовало истине
[72]. Но утверждение, что эти системы большей частью представляют собой исключения из правил, истиной не являлось. Поведение целого класса движущихся объектов – маятников, в том числе двойных, спиралей и гибких стержней, щипковых и смычковых струн – описывается классической механикой. К жидкостным и электрическим системам применили сходный математический аппарат. Однако почти никто во времена безраздельного господства «классики» не подозревал, что стоит только уделить нелинейным элементам должное внимание – и обнаружится, что в динамических системах таится хаос.
Физик не способен до конца проникнуть в тайны турбулентности и сложности, не поняв феномена маятника. Но до конца постичь эти тайны в первой половине XX века было попросту невозможно. По мере того как хаос стал сводить воедино изучение различных систем, динамика маятников расширялась, вбирая в себя поведение даже таких продуктов высоких технологий, как лазеры и джозефсоновские контакты
[73]. Ход некоторых химических реакций оказался подобен поведению маятника
[74]. Нечто похожее прослеживалось и в биении сердца. По словам одного ученого, динамика маятника таила в себе новые возможности для «психологии и психиатрии, экономического прогнозирования и, возможно, даже для социальной эволюции»
[75].