Книга Хаос. Создание новой науки, страница 9. Автор книги Джеймс Глик

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Хаос. Создание новой науки»

Cтраница 9

Простейший пример конвекции можно наблюдать в жидкости, наполняющей сосуд с ровным дном, которое можно нагревать, и с гладкой поверхностью, которую можно охлаждать. Разница температур между горячим дном и прохладной поверхностью порождает потоки жидкости. Если разница небольшая, жидкость остается неподвижной; теплота перемещается к поверхности благодаря теплопроводности, как в металлическом бруске, не преодолевая естественного стремления жидкости находиться в покое. К тому же такая система устойчива: случайные движения в ней, происходящие, например, когда лаборант нечаянно заденет сосуд, обычно скоро затухают и жидкость возвращается в состояние покоя.

Но стоит увеличить температуру, как поведение системы меняется. По мере нагревания жидкость расширяется снизу, становится менее плотной, а значит, и чуть легче – достаточно, чтобы преодолеть трение; в результате вещество устремляется к поверхности. Если конструкция сосуда хорошо продумана, в нем появляется цилиндрический вал: горячая жидкость поднимается по одной из стенок, а охлажденная спускается по противоположной. Понаблюдав за сосудом, можно проследить непрерывный цикл таких перемещений. Вне лабораторных стен сама природа создает области конвекции. К примеру, когда солнце нагревает песчаную поверхность пустыни, перемещающиеся воздушные массы могут сформировать миражи высоко в облаках или вблизи земли.

С дальнейшим ростом температуры поведение жидкости еще больше усложняется: в завитках зарождаются колебания. Уравнения Лоренца были слишком примитивными для их моделирования, описывая лишь одну черту, характерную для конвекции в природе, – кругообразное перемещение нагретой жидкости. В уравнениях учитывалась как скорость такого перемещения, так и теплопередача, и оба физических процесса взаимодействовали друг с другом. Когда любой циркулирующий объем горячей жидкости поднимается кверху, разогретое вещество приходит в контакт с более холодной субстанцией и теряет теплоту. Однако если движение жидкости происходит достаточно быстро, она не потеряет всю избыточную тепловую энергию к тому моменту, как достигнет верха и начнет опускаться по другой стороне вала. Эта жидкость может начать подталкивать систему к вращению в противоположном направлении [42].


Хаос. Создание новой науки

Движение жидкости (или газа). когда жидкость нагревают снизу, в ней обычно образуются цилиндрические валы (слева). горячая жидкость поднимается по одной стороне вала, отдает тепло и опускается по противоположной – наблюдается конвекция. если жидкость нагревать сильнее (справа), возникнет нестабильность, влекущая за собой рябь в валах жидкости, бегущую в двух направлениях по всей длине цилиндров. При дальнейшем повышении температуры поток становится бурным и турбулентным.


Хотя система Лоренца не отражала полностью процесс конвекции, оказалось, что у нее были аналоги в реальном мире. К примеру, уравнения Лоренца достаточно точно описывают функционирование динамо-машины, уже вышедшей из употребления предшественницы современных генераторов, где электрический ток течет через диск, вращающийся в магнитном поле. При определенных условиях динамо-машина может дать обратный ход. Некоторые ученые, ознакомившись с уравнениями Лоренца, предположили, что, быть может, поведение динамо-машины прольет свет на другой специфический феномен – инверсию магнитного поля Земли [43]. Известно, что так называемое геодинамо меняло свое направление много раз за земную историю [44]. Интервалы между этими явлениями казались странными и необъяснимыми. Столкнувшись с подобной беспорядочностью, теоретики, как правило, искали решение за рамками конкретной системы, выдвигая предположения вроде столкновения с метеоритами. Но возможно, геодинамо обладает своим собственным хаотическим поведением.

Другой системой, вполне точно описываемой уравнениями Лоренца, является водяное колесо определенного типа, механический аналог вращающихся конвекционных кругов [45]. Вода непрерывно льется с вершины колеса в емкости, закрепленные на его ободе, откуда вытекает дальше через небольшие отверстия. В том случае, когда поток воды мал, верхняя емкость заполняется недостаточно быстро для преодоления трения. Если же скорость водяной струи велика, колесо начинает поворачиваться под весом жидкости. При достаточном напоре колесо станет непрерывно вращаться. При еще большей скорости струи емкости будут успевать заполниться до краев и вода из них не успеет вылиться за время движения вниз. Поднимаясь вверх, своей тяжестью они станут замедлять вращение, в результате колесо может остановиться и начать вращаться в противоположном направлении.

Интуиция физика, еще не столкнувшегося с хаосом, подсказывала Лоренцу, что за длительный период времени при неизменном потоке воды система придет в устойчивое состояние. Колесо будет или равномерно вращаться, или постоянно через определенные неизменные промежутки времени менять на правление вращения, крутясь сначала вперед, затем назад. Однако Лоренц обнаружил, что это не так.


Хаос. Создание новой науки

Водяное колесо Лоренца. Первая хаотическая система, обнаруженная Эдвардом Лоренцем, точно соответствует механическому устройству – водяному колесу, которое может вести себя удивительно сложным образом. Вращающееся колесо имеет те же свойства, что и вращающиеся в процессе конвекции цилиндры жидкости: колесо похоже на их поперечные сечения. Обе системы непрерывно подстегиваются потоком – воды или теплоты, – и обе рассеивают энергию. Жидкость утрачивает теплоту; вода выливается из черпаков колеса. Долгосрочное поведение обеих систем зависит от того, насколько велика управляющая ими энергия. Вода наливается сверху с постоянной скоростью. Если скорость ее небольшая, верхний черпак никогда не становится полным, трение не преодолевается и колесо не поворачивается. (Подобное явление наблюдается и в жидкости: если теплоты недостаточно, чтобы преодолеть вязкость, жидкость останется неподвижной.) С увеличением скорости водяного потока колесо начинает двигаться под тяжестью верхнего черпака (слева)и даже вращаться с постоянной скоростью (в центре). Однако при чрезмерной скорости воды (справа)вращение колеса может стать хаотичным из-за нелинейных воздействий, появившихся в системе. Черпаки, проходя под водяным потоком, наполняются в зависимости оттого, насколько быстро вращается колесо. При быстром вращении колеса им не хватает времени, чтобы наполниться. (Так же и жидкости в быстровращающихся конвекционных завитках недостает времени, чтобы поглотить тепло.) Кроме того, емкости могут начать двигаться в обратную сторону, не успев лишиться всей воды. В результате полные черпаки на движущейся вверх стороне колеса способны замедлить вращение всей системы, а затем вызвать ее поворот в обратную сторону. Фактически Лоренц обнаружил, что в течение длительных периодов времени вращение может менять свое направление несколько раз, никогда не обретая постоянной скорости и никогда не повторяясь каким-либо предсказуемым образом [46].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация