Книга Уродливая Вселенная, страница 15. Автор книги Сабина Хоссенфельдер

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Уродливая Вселенная»

Cтраница 15

Поток в пространстве теорий позволяет количественно оценить, насколько же теория для низкого разрешения зависит от выбора параметров для высокого; именно так работают вычисления Джудиче [35]. Это проиллюстрировано на рисунке 5. Низкое разрешение – это то, что мы можем исследовать сейчас, где у нас есть Стандартная модель. Кажется странным называть его «низким», учитывая, что это самое высокое разрешение, какого мы когда-либо достигали. Но оно действительно низкое по сравнению с разрешением, которого, как мы думаем, необходимо достичь для того, чтобы пролить свет на теорию всего, – разрешением, значительно превосходящим даже возможности Большого адронного коллайдера.

Стандартная модель (для низкого разрешения) естественна – или не требует тонкой настройки, – если не особенно важно, откуда конкретно в пространстве теорий мы стартуем при высоком разрешении. В этом случае поток всегда вынесет нас куда-то поблизости (в пределах погрешности измерений) от Стандартной модели (рис. 5, слева). Если же мы вынуждены точно подбирать теорию для высокого разрешения, с тем чтобы очутиться рядом со Стандартной моделью, значит, мы тем самым осуществляем тонкую настройку исходной точки. Тогда Стандартная модель неестественна (рис. 5, справа).


Уродливая Вселенная

Рис. 5. Иллюстрация потока в пространстве теорий в двух случаях: когда теория (а именно – Стандартная модель, обозначенная крестиком) для низкого разрешения естественна / не требует тонкой настройки (слева) и когда она неестественна / требует тонкой настройки (справа).


В случае с тонкой настройкой начальные точки теорий, воспроизводящих Стандартную модель (то есть согласующихся с наблюдениями), должны располагаться близко друг к другу. Это небольшое расстояние соответствует неприглядно маленьким числам, обсуждавшимся нами выше, таким как масса бозона Хиггса.

В следующей подглавке я кратко расскажу о законах пространства, времени и материи, уже нами открытых, и о типе экспериментов, выявивших эти законы. Если вы уже знакомы со Стандартной моделью и согласованной космологической моделью, вы, возможно, предпочтете пропустить этот раздел.

Орудия труда

В 1858 году ирландско-американский писатель Фитц Джеймс О’Брайен придумал идеальный микроскоп. В рассказе «Бриллиантовая линза» безумный микроскопист Линли общается с духом Антони ван Левенгука, который за двести лет до этого открыл бактерии, совершенствуя самые первые микроскопы 52. Всю жизнь Левенгук скрывал свои методы изготовления линз. Но благодаря помощи медиума, мадам Вульпес, Линли узнает от покойного Левенгука, что необходим «бриллиант в сто сорок карат, длительное время подвергавшийся влиянию электромагнитных токов», чтобы сконструировать микроскоп, «увеличительная способность которого будет ограничена только разрешаемостью объекта».

Не имея достаточного финансирования для своих научных исследований, Линли убивает друга и крадет нужный бриллиант. Позже он вглядывается в каплю воды:

Я не могу, не смею пытаться описать чары этого божественного откровения совершеннейшей красоты. Эти глаза таинственного лилового цвета, влажные и ясные, ускользают от моих слов. Ее длинные блестящие волосы, следующие за восхитительной головкой золотой струей, словно дорожка, прочерченная в небесах падающей звездой, будто бы гасят мои самые жгучие строки своим великолепием.

Время покажет, так ли прекрасна природа на самых коротких расстояниях, как изобразил О’Брайен, но мы уже знаем, что его чудесный микроскоп останется художественным вымыслом. Разрешающая сила линз зависит от посредника, на которого они полагаются, – от излучения. Большие длины волн нечувствительны к малым расстояниям, как грубые, тяжелые ботинки нечувствительны к бороздкам на ступенях эскалатора. Разрешающая способность микроскопов ограничена длиной волны используемого излучения, и для того, чтобы исследовать меньшие расстояния, нам нужны более короткие волны.

Видимый свет имеет длины волн примерно от 400 до 700 нанометров [36]. Это приблизительно в 10 000 раз больше размера атома водорода. Поэтому видимый свет прекрасно подходит, если мы хотим изучать клетки, но его недостаточно, если мы намереваемся исследовать атомы. Мы можем достичь большего разрешения, используя излучение с меньшими длинами волн, например рентгеновские лучи, которые улучшают ситуацию по сравнению с видимым светом в 100–10 000 раз. Однако еще более коротковолновое излучение становится все труднее фокусировать и все сложнее с ним обращаться.

Чтобы еще улучшить разрешение, мы вынуждены обратиться к главному уроку квантовой механики: на самом деле нет волн и частиц. Вместо этого все во Вселенной (включая, насколько мы знаем, и ее саму) описывается волновой функцией, имеющей свойства как частиц, так и волн. Иногда эта волновая функция проявляется больше как волна, иногда – больше как частица. Но по своей сути она ни то ни другое – это новая самостоятельная категория.

Стало быть, строго говоря, нам не следует вообще произносить «элементарные частицы», потому-то один из моих профессоров и предложил вместо этого называть их «элементарными сущностями». Но это выражение никто не использует, и я тоже не хочу им вас мучить. Просто помните, что, когда бы физики ни упоминали частицы, они на самом деле имеют в виду математический объект, который зовется волновой функцией и не является ни частицей, ни волной, обладая свойствами обоих.

Волновая функция сама по себе не соответствует наблюдаемой величине, но по ее абсолютному значению мы можем вычислять вероятности для измерения физических наблюдаемых. Это лучшее, что мы можем сделать в квантовой теории: кроме особых случаев, результат отдельного измерения предсказать нельзя.

Квантовая теория помогает нам улучшить разрешение микроскопов, поскольку показывает, что чем тяжелее частица (сущность?) и чем быстрее она движется, тем меньше ее длина волны. Поэтому электронные микроскопы, в которых используются пучки электронов вместо света, достигают гораздо более высокого разрешения, чем световые. Даже если электроны разогнаны лишь умеренно благодаря использованию электрических и магнитных полей, такие микроскопы способны разрешать структуры размером с атом. В принципе, мы можем улучшить разрешение насколько угодно, еще сильнее разгоняя электроны. В этом главная причина того, что современная физика побуждает к конструированию все больших и больших ускорителей частиц и движима им сама: чем выше энергия столкновения, тем меньшие расстояния можно исследовать.

В отличие от световых микроскопов, в которых установлены зеркала и линзы, в ускорителях частиц используются электрические и магнитные поля, чтобы разгонять и фокусировать пучки электрически заряженных частиц. Однако по мере того, как мы увеличиваем скорость частиц, нужных для исследования некоего объекта, становится все труднее получать из измерения информацию. Это происходит потому, что частицы, предназначавшиеся для измерения исследуемого образца, начинают заметно его менять. Видимый свет, падающий на колечко лука, слабо на него влияет, разве что самую малость нагреет. Но пучок стремительных электронов, бьющих по тонкой мишени, при достаточно высокой энергии эту мишень разрушает. Тогда информацию о том, что произошло на очень коротких расстояниях, приходится искать в осколках. И это в целом и есть физика высоких энергий: попытки извлечь информацию из осколков от столкновений [37].

Вход
Поиск по сайту
Ищем:
Календарь
Навигация