С биоэнергетической точки зрения некоторые ткани стареют очень быстро, другие — со средней скоростью, а третьи — весьма медленно. Это относится и к целостным организмам — два человека одного и того же хронологического возраста могут сильно отличаться друг от друга по биологическому возрасту.
Согласно теории Линана, именно вызванное мутациями митохондрий биоэнергетическое увядание является основным фактором дегенеративных болезней и старческой немощности. Результаты современных исследований говорят о том, что митохондрии — ключ к клеточному старению и базовый источник витальности клеток, что подтверждает сформулированные Линаном идеи.
В ходе эволюции каждый вид получил оптимальную именно для него скорость появления свободных радикалов. Митохондрии птиц, как отмечает Лэйн, формируют сравнительно мало свободных радикалов и поэтому живут долго, несмотря на быстрый обмен веществ. Почему же, задается он вопросом, не все виды обладают такими замечательными митохондриями? Несомненно, крысы в первую очередь выиграли бы от сокращения числа свободных радикалов, потому что тогда им не пришлось бы тратить гигантские ресурсы на выработку огромного количества антиоксидантов. Разумный вопрос. Ответ на него радикально отличает митохондриальную теорию от теории свободных радикалов (такой вот получился каламбур).
Помните причину существования отдельных копий ДНК в митохондриях? Речь идет о необходимости сбалансировать процесс окислительного фосфорилирования, так как нарушение последовательной работы комплексов и компонентов ЭТЦ приводит к нарушению клеточного дыхания и массовой утечке супероксидов. Сохранив набор важных генов, каждая митохондрия контролирует собственное дыхание, основываясь на своих потребностях (а не на потребностях других митохондрий).
Также напоминаю, что сигнал о синтезе новых компонентов для ЭТЦ поступает от самих свободных радикалов. Возможно, именно поэтому крысы нуждаются в их повышенном количестве: если бы грызуны обладали более плотно закрытыми митохондриями, сигналы их свободных радикалов были бы ослаблены массой антиоксидантов, а для их различения потребовалась бы более совершенная система опознавания.
Возьмем в качестве примера лесной пожар, пламя которого можно уподобить свободным радикалам. Обычно мы относимся к пожару как к нежелательному явлению, но в небольших масштабах он играет жизненно важную роль в поддержании устойчивости экосистемы. Пламя за часы или даже минуты расщепляет органические материалы, которые сами по себе разлагаются в течение многих лет, а то и десятилетий; очищает покров земли, открывая возможности для роста новых растений. Семена некоторых представителей флоры (например, сосна Банкса) нуждаются в огне, который растапливает покрывающий их защитный слой смолы и дает возможность прорасти. Что касается пожарных (антиоксидантов), то они, конечно, нужны, но если в лесах вообще не будет пожаров, то соответствующие экосистемы никогда не смогут обновиться. Кроме того, есть такой вид тушения пожаров, как встречный пал, то есть атака огня на огонь. В микромире встречный пал — это использование прооксидантов. В случае правильного применения такого метода он может быть ценным инструментом при лечении онкологических заболеваний, внутривенным введением высоких доз витамина С и т. д. Но если сделать ошибку, то возникнет новый очаг пожара.
Хотя мы до конца не знаем, как работают сигналы свободных радикалов, нам известно, что система, частью которой они являются, представляет собой природный термостат, который требует определенной степени флуктуации супероксидов. Если скорость выбросов свободных радикалов из митохондрий не менялась бы, система не могла бы корректировать саму себя (так же как и термодатчики в помещении, которые срабатывают только при изменении температуры).
Если же исходящий от свободных радикалов сигнал игнорируется или свидетельствует о неразрешимости проблемы, то запускается программа апоптоза. Когда это происходит только с одной или несколькими митохондриями, клетка воздерживается от самоуничтожения. Но если под власть разрушительного процесса одновременно попадает масса митохондрий, то радикальный сигнал пробивает пороговое значение и для клетки это сигнал, что ее время пришло. Итак, если в соответствии с теорией свободных радикалов и ранними версиями митохондриальной теории супероксиды рассматривались как абсолютное зло, современная митохондриальная теория старения положительно оценивает сигнальную функцию свободных радикалов и считает ее жизненно важной.
Изложенное выше не отменяет того факта, что свободные радикалы вызывают процесс старения и ограничивают продолжительность жизни. Известно, что мутации контрольных участков митохондриальной ДНК со временем накапливаются. Такие мутации, возникнув в одной клетке, могут распространиться по всем клеткам соответствующей ткани. Мутации контрольных участков мДНК могут повлиять на работу факторов транскрипции (напомним, что речь идет о белках, контролирующих процесс синтеза — транскрипцию — мРНК на матрице ДНК путем связывания со специфичными участками ДНК), не затрагивая генетическую последовательность ДНК. Распространение мутаций такого типа зависит от способности искаженной ДНК к репликации. Предположим, мутация приводит к тому, что митохондрия начинает вяло, в отличие от здоровой митохондрии, реагировать на сигнал о самовоспроизведении путем деления или вообще прекращает воспроизводить себя. Соответственно, количество таких митохондрий будет постепенно уменьшаться, и в результате клетка избавится от них в процессе регулярной замены своих компонентов. Если же мутация, наоборот, ведет к ускорению репликации дефективной ДНК, то больные митохондрии рано или поздно заменят нормально функционирующие источники клеточной энергии. Важно отметить, что такие мутации, как правило, охватывают все клетки соответствующей ткани, если, конечно, речь не идет о фатальном нарушении митохондриальных функций (полном прекращении работы ЭТЦ), приводящем к немедленной смерти клетки.
Напротив, мутации кодирующих участков митохондриальной ДНК могут усиливаться в конкретных клетках, но редко распространяются за пределы 1 % клеточной структуры соответствующей ткани. Причина этого заключается в том, что мутации этого типа обычно нарушают нормальную работу ЭТЦ, искажая внутреннюю структуру критически важных ее белковых субъединиц. В результате резко повышается количество свободных радикалов, причем, в отличие от нормального положения вещей, сигнал о необходимости синтеза новых комплексов или компонентов не спасет ситуацию, так как новые белки будут такие же дефективные. Звучит ужасно, не так ли? К счастью, современная версия митохондриальной теории старения гораздо более оптимистична. В соответствии с ней, дефектные митохондрии сообщают о своей ущербности ядру, после чего ядерная ДНК позволяет клетке адаптироваться к новому вызову.
Этот сигнал от митохондрий ядру называется ретроградным путем, так как он является полной противоположностью нормальной направленности сигнальных команд (и ядра остальной части клетки). Если митохондрия повреждена, а клеточное дыхание находится под угрозой, митохондрия посылает в ядро сигнал SOS о недостатке энергии. Ядро получает запрос на активацию ферментационных генов вместо дыхательных генов, ему нужно включить запасной генератор энергии в виде анаэробного дыхания (выработки энергии без митохондрий и кислорода). Такая ситуация способствует появлению новых митохондрий, или митохондриальному биогенезу — процессу, посредством которого в клетке образуются новые митохондрии и который защищает клетку от дальнейшего развития метаболического стресса, а также представляет собой единственный способ защиты клетки от любой биоэнергетической недостаточности.