Популяция митохондрий находится в состоянии переменчивости. Они делятся, если дефицит энергии является сравнительно умеренным и клетка может починить в наименьшей степени поврежденные митохондрии, тогда как безнадежно мутировавшие вымирают. Последние подвергаются управляемому изнутри распаду (речь идет о митохондриальной версии апоптоза — митофагии), а их компоненты вновь вводятся в жизнедеятельность клетки. В наибольшей степени поврежденные и дисфункциональные митохондрии жизнь постоянно стремится с корнем вырвать из популяции генераторов клеточной энергии. Большинство клеток теоретически может бесконечно продлевать свою жизнь, постоянно восполняя дефицит жизненной силы.
Возможно, вы решили, что нами найден источник вечной молодости. К сожалению, если бы все было так просто, все взрослые люди находились бы в биологическом возрасте, соответствующем двадцати с хвостиком годам. Но это только мечты. В то время как жизнь способна выносить за скобки самые серьезные мутации митохондрий, с возрастом наши «крошечные электростанции» все равно изнашиваются, и у нас нет средств (во всяком случае, естественных), чтобы это исправить. Может быть, в будущем человечество научится извлекать спящие неповрежденные митохондрии из стволовых клеток и направлять их в каждую другую клетку организма, но сейчас мы находимся от этого достаточно далеко. Тем не менее уже сейчас мы можем замедлять процесс старения и отсрочивать или даже предотвращать болезни, возникающие в результате постепенного увядания митохондрий.
Как вы уже знаете, с возрастом человеческий организм вынужден использовать все более и более дефектные митохондрии. Но нельзя сказать, что это похоже на сход лавины. Клетка и ее митохондрии адаптируются к процессу старения и берут его под контроль, достигая определенного уровня равновесия. Результаты большинства исследований говорят об отсутствии каких-либо действительно серьезных отличий (включая разрушение белков, липидов и углеводов) между молодой и старой клетками. Деградация же, как выяснили ученые, затрагивает диапазон оперативных генов, и это связано с судьбой факторов транскрипции. Деятельность наиболее важных транскрипционных факторов зависит от того, окислены они или восстановлены: многие из них окисляются свободными радикалами и затем восстанавливаются специализированными ферментами. Именно тонкий баланс между окислением и восстановлением обусловливает активность факторов транскрипции. (Будущее медицины в существенной степени связано с исследованием окислительно-восстановительного (или редокс) потенциала.)
Редокс-чувствительные факторы транскрипции действуют как радары, предупреждая клетку о надвигающихся опасностях и давая ей возможность защититься от них тем или иным способом. Их окисление инициирует изменения, которые предотвращают любое дальнейшее окисление. Ядерный (то есть входящий в состав клеточного ядра) респираторный фактор транскрипции NRF1 координирует экспрессию генов, обеспечивающих биогенезис митохондрий. Если клетка подвергается сильному окислению, происходит активизация NRF1, что, в свою очередь, побуждает митохондрии воспроизводить себя в попытке восстановить редокс-равновесие. Кроме того, NRF1 индуцирует экспрессию множества других генов, которые защищают клетку до тех пор, пока не будут «сгенерированы» новые митохондрии.
Чем более окисленным становится внутреннее пространство клетки, тем в большей степени редокс-чувствительные факторы транскрипции отвлекают гены клеточного ядра от повседневной работы и заставляют их заниматься антикризисной деятельностью, чтобы защитить клетку от стресса. В результате в клетке устанавливается новый режим функционирования, позволяющий сохранять жизнестойкость в изменившихся условиях и сконцентрироваться в большей степени на восполнении потерь, а не на развитии. Такого рода равновесное состояние может сохраняться годами, а то и десятилетиями. К репликации способны только в наименьшей степени поврежденные митохондрии, поэтому обычно нелегко обнаружить признаки митохондриальных мутаций или повреждений. Мы не умираем мгновенно, а просто замечаем, что начинаем чаще уставать, дольше восстанавливаемся после болезни и испытываем трудности в запоминании.
Митохондриальная теория старения объясняет, почему появление супероксидов не приводит к спиралеобразно нарастающему, катастрофическому разрушению организма, как следовало бы ожидать, исходя из теории свободных радикалов и других концепций. Свободные радикалы используются как сигнал опасности, который позволяет клеткам адаптироваться. Митохондриальная теория старения объясняет также, почему клетки не имеют больше антиоксидантов, чем требуется для нормальной работы: переизбыток антиоксидантов лишает клетку чувствительности к нарушению окислительно-восстановительного баланса. Без свободных радикалов вся клеточная система стала бы дезадаптивной, а митохондрии не смогли бы приспосабливаться к меняющимся условиям окружающей их среды. Результатом всего этого стало бы огромное количество мутаций и быстрый конец современной биосферы.
К сожалению, после нескольких десятилетий постоянной адаптации к стрессовым условиям жизни клетки рано или поздно утрачивают запас сравнительно здоровых митохондрий. После того как это происходит, сигнал клетки митохондриям о необходимости воспроизводить себя неизбежно приводит к копированию ущербных митохондрий. В конце концов дефектные митохондрии заполоняют внутриклеточное пространство. Интересно, что если бы мы изучили пораженный орган или разрушающуюся ткань, то увидели бы определенное количество затронутых деградацией клеток, а не множество клеток с дефектными митохондриями. Когда больные митохондрии заполоняют клетку изнутри, она получает сигнал удалить себя из сообщества с помощью апоптоза. И хотя с формальной точки зрения в увядающих тканях мы не найдем массы дефектных митохондрий, старение последних приводит к медленному, но неуклонному уменьшению плотности и функциональности тканей (проявлением чего являются остеопороз и саркопения
[15]) — предвестнику старости, болезней и затем смерти.
Согласно данным последних исследований, митохондрии способны гораздо более эффективно, чем считалось раньше, устранять ущерб, нанесенный мтДНК. Так как в каждой митохондрии обычно присутствуют от пяти до десяти копий мтДНК, в любой момент времени рабочая копия того или иного специфического гена может быть приведена в действие. Она используется как шаблон для рекомбинации (восстановления) пораженного гена. Как бы то ни было, значение этого открытия для новой версии митохондриальной теории старения еще предстоит оценить.
В любом случае, помимо сопряженности с результатами новейших исследований, современная митохондриальная теория старения позволяет глубоко понять сущность возрастных дегенеративных болезней и дает возможность предотвращать или даже излечивать их.
Превышая максимальную продолжительность жизни у млекопитающих
Каждый вид класса млекопитающих характеризуется теоретическим максимумом продолжительности жизни. В то время как успехи человечества в развитии медицины и здравоохранения привели к впечатляющим успехам в плане увеличения среднестатистической продолжительности жизни, пока нам остается только мечтать о том, чтобы преодолеть планку в 120 лет, ограничивающую время земного бытия. Ученым не удалось сколько-нибудь значимо повысить и жизненный максимум других млекопитающих, за исключением экспериментов, в ходе которых они подвергались такому испытанию, как ограничение потребляемых калорий. Увеличение максимальной продолжительности жизни при малокалорийной диете и тот факт, что ограниченные в калориях животные являются биологически более молодыми, чем их едящие без ограничений одногодки, свидетельствует о том, что ограничение калорий ослабляет по крайней мере некоторые из процессов старения.