Sochocka M., et al. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: new approach to therapy. CNS Neurol Disord Drug Targets. 2013 Sep; 12(6):870–81. Epub Feb 27. doi:1 0.2174/18715273113129990072.
Wang X., et al. Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci. 2009 Jul 15; 29(28):9090–103. doi:10.1523/ JNEUROSCI.
Webster M. T., et al. The effects of perturbed energy metabolism on the processing of amyloid precursor protein in PC12 cells. J Neural Transm. 1998 Nov; 105(8–9):839–53. doi:10.1007 /s007020050098.
Ying W. Deleterious network: a testable pathogenetic concept of Alzheimer’s disease. Gerontology. 1997; 43:242–53. doi:10.1159/000213856.
Переедание и болезнь Альцгеймера
Adeghate E., Donath T., Adem A. Alzheimer disease and diabetes mellitus: do they have anything in common? Curr Alzheimer Res. 2013 Jul; 10(6):609–17. Epub Apr 29. doi:10.2174 /15672050113109990009.
Cetinkalp S., Simsir I. Y., Ertek S. Insulin resistance in brain and possible therapeutic approaches. Curr Vasc Pharmacol. 2014; 12(4):553–64. Epub Apr 25. doi:10.2174/1570161112999140206 130426.
Geda Y. E. Abstract 3431. Paper presented at: American Academy of Neurology (AAN) 64th Annual Meeting; 2012 Apr 21–28; New Orleans, Louisiana. Mastrogiacomo F., Bergeron C., Kish E. J. Brain alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. J Neurochem. 1993 Dec; 61(6):2007–14. doi:10.1111/j.1471–4159.1993.tb07436.x.
Болезнь Паркинсона: новый взгляд на терапию ДОФА-содержащими препаратами
Abou-Sleiman P. M., Muqit M. M, Wood N. W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006 Mar; 7(3):207–19. doi:10.1038/nrn1868.
Beal M. F. Therapeutic approaches to mitochondrial dysfunction in Parkinson’s disease. Parkinsonism Relat Disord. 2009 Dec; 15 Suppl 3:S189–S194. doi:10.1016/S1353-8020(09) 70812-0.
Beal M. F., et al. Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice. Brain Res. 1998 Feb; 783(1):109–14. doi:10.1016/S0006-8993(97)01192-X.
Bender A., et al. TOM40 mediates mitochondrial dysfunction induced by α-synuclein accumulation in Parkinson’s disease. PLoS One. 2013 Apr 23; 8(4):e62277.
Berndt N., Holzhutter H. G., Bulik S. Implications of enzyme deficiencies on the mitochondrial energy metabolism and ROS formation of neurons involved in rotenone-induced Parkinson’s disease: A model-based analysis. FEBS J. 2013 Sep 12; 280(20):5080–93. Epub 2013 Aug 13. doi:10.1111/ febs.12480.
Dolle C., et al. Defective mitochondrial DNA homeostasis in the substantia nigra in Parkinson disease. Nat Commun. 2016 Nov 22; 7:13548.
Ebadi M., et al. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. 2001. Biol Signals Recept 10:224–53. doi:10.1038/ncomms13548.
Freeman D., et al. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis. PLoS One. 2013 Apr 25; 8(4):e62143.
Haas R. H., et al. Low platelet mitochondrial complex I and complex II/ III activity in early untreated Parkinson’s disease. Ann Neurol. 1995 Jun; 37(6):714–22. doi:10.1002/ana.410370604.
Henchcliffe C., Beal M. F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol. 2008 Nov; 4(11):600–9. doi:10.1038/ncpneuro0924.
Hosamani R., Muralidhara. Acute exposure of Drosophila melanogaster to paraquat causes oxidative stress and mitochondrial dysfunction. Arch Insect Biochem Physiol. 2013 May; 83(1):25–40. Epub 2013 Apr 5.
Isobe C., Abe T., Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2’-deoxyguanosine in the cerebrospinal fluid of patients living with Parkinson’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. Neurosci Lett. 2010 Jan 18; 469(1):159–63. Epub 2009 Nov 26. Lehmann S., Martins L. M. Insights into mitochondrial quality control pathways and Parkinson’s disease. J Mol Med (Berl). 2013 Jun; 91(6):665– 71. Epub May 4. doi:10.1007/s00109-013-1044-y.
Li D. W., et al. α-lipoic acid protects dopaminergic neurons against MPP+-induced apoptosis by attenuating reactive oxygen species formation. Int J Mol Med. 2013 Jul;32(1):108–14. Epub Apr 24. doi:10.3892/ ijmm.2013.1361.
Lin T. K., et al. Mitochondrial dysfunction and biogenesis in the pathogenesis of Parkinson’s disease. Chang Gung Med J. 2009 Nov — Dec; 32(6):589–99.
Lodi R., et al. Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol. 2001 May 1; 49(5):590–6. doi:10.1002 /ana.1001.
Mena M. A., et al. Neurotoxicity of levodopa on catecholamine-rich neurons. Mov Disord. 1992; 7(1):23–31. doi:10.1002/mds.870070105.
Mizuno Y., et al. Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochima et Biophysica Acta. 1995 May 24; 1271(1):265–74. doi:10.1016/0925-4439 (95)00038-6.
Mizuno Y., et al. Mitochondrial dysfunction in Parkinson’s disease. Ann Neurol. 1998 Sep; 44 (3 Suppl 1):S. 99–S. 109.
Musumeci O., et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001 Apr 10; 56(7):849–55.
Nakamura K. α-Synuclein and mitochondria: partners in crime? Neurotherapeutics. 2013 Jul; 10(3):391–9. Epub Mar 20. doi:10.1007/s13311-013-0182-9.
Olanow C. W., et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol. Nov 1995; 38(5):771–7. doi:10.1002/ ana.410380512.
Perfeito R., Cunha-Oliveira T., Rego A. C. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson’s disease — resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med. 2012 Nov 1; 53(9):1791–806. doi:10.1016/j.freerad-biomed.2012.08.569.
Przedborski S., Jackson-Lewis V., Fahn S. Antiparkinsonian therapies and brain mitochondrial complex I activity. Mov Disord. May 1995; 10(3):312–7. doi:10.1002/mds.870100314.
Schapira A. H., et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov. 2006 Oct; 5(10):845–54. doi:10.1038/nrd2087.
Shults C. W., et al. Carbidopa/levodopa and selegiline do not affect platelet mitochondrial function in early Parkinsonism. Neurol. 1995 Feb; 45(2):344–8. doi:10.1212/WNL.45.2.344.