Книга Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость, страница 71. Автор книги Ли Ноу

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Эгоистичная митохондрия. Как сохранить здоровье и отодвинуть старость»

Cтраница 71

Li J. M., Shah A. M. Endothelial cell superoxide generation: regulation and relevance for cardiovascular pathophysiology. Am J Physiol Regul Integr Comp Physiol. 2004 Nov; 287(5):R1014–R1030. doi:10.1152/ajp-regu.00124.2004.

Lin J., et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002 Aug 15; 418(6899):797–801. doi:10.1038/nature00904.

Lindroos M. M., et al. m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive {betacell dysfunction. Diabetes. 2009 Mar; 58(3):543–9. doi:10.2337/db08-0981. Linnane A. W., Kovalenko S., Gingold E. B. The universality of bioenergetic disease. Age-associated cellular bioenergetic degradation and amelioration therapy. Ann NY Acad Sci. 1998 Nov 20;854:202–13. doi:10.1111/j.1749–6632.1998.tb09903.x.

Maasen J. A. Mitochondria, body fat and type 2 diabetes: what is the connection? Minerva Med. 2008 Jun; 99(3):241–51.

Maassen J. A., et al. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004 Feb; 53 Suppl 1:S103–S109, doi:0.2337/diabetes.53.2007.S103.

Maassen J. A., et al. Mitochondrial diabetes and its lessons for common type 2 diabetes. Biochem Soc Trans. 2006; 34:819–23.

Morino K., et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005 Dec 1; 115(12):3587–93. doi:10.1172/JCI25151. Patti M. E., et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003 Jul 8; 100(14):8466–71. Epub 2003 Jun 27. doi:10.1073/pnas.1032913100.

Petersen K. F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003 May 16; 300(5622):1140–2. doi:10.1126/science.1082889.

Ritov V. B., et al. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes. 2005 Jan; 54(1):8–14. doi:10.2337/diabe-tes.54.1.8.

Rocha M., et al. Mitochondrial dysfunction and oxidative stress in insulin resistance. Curr Pharm Des. 2013; 19(32):5730–41. Epub Feb 20 2013.

Rocha M., et al. Perspectives and potential applications of mitochondria-targeted antioxidants in cardiometabolic diseases and type 2 diabetes. Med Res Rev. 2014 Jan; 34(1):160–89. Epub 2013 May 3. doi:10.1002/med.21285. Rovira-Llopis S., et al. Mitochondrial dynamics in type 2 diabetes: pathophysiological implications. Redox Biology. 2017 Apr; 11:637–45. doi:10.1016/j.redox.2017.01.013.

Ryu M. J. et al. Crif1 deficiency reduces adipose OXPHOS capacity and triggers inflammation and insulin resistance in mice. PLoS Genet. 2013 Mar; 9(3):e1003356. Epub 2013 Mar 14. doi:10.1371/journal.pgen.1003356. Schrauwen P., et al. Uncoupling protein 3 content is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2001 Dec 1; 50(12):2870– 3. doi:10.2337/diabetes.50.12.2870.

Schrauwen P., Hesselink M. K. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes. Diabetes. 2004 Jun; 53(6):1412–7. doi:10.2337/diabetes.53.6.1412.

Short K. R., et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005 Apr 12; 102(15):5618–23. doi:10.1073/pnas.0501559102.

Suwa M., et al. Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol (1985). 2006 Dec; 101(6):1685–92. doi:10.1152/ japplphysiol.00255.2006.

Takahashi Y., et al. Hepatic failure and enhanced oxidative stress in mitochondrial diabetes. Endocr J. 2008 Jul; 55(3):509–14. doi:10.1507/ endocrj.K07E-091.

UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998 Sep 12; 352(9131):837–53. doi:10.1016/S0140-6736(98)07019-6.

Vanhorebeek I., et al. Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness. Crit Care Med. 2009 Apr; 37(4):1355–64. doi:10.1097/CCM.0b013e31819cec17.

Vidal-Puig A. J., et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem. 2000 May 26; 275(21):16258–66. doi:10.1074/ jbc.M910179199.

Wang X. et al. Protective effect of oleanolic acid against beta cell dysfunction and mitochondrial apoptosis: crucial role of ERK-NRF2 signaling pathway. J Biol Regul Homeost Agents. 2013 Jan — Mar; 27(1):55–67.

Weksler-Zangen S., et al. Dietary copper supplementation restores α-cell function of Cohen diabetic rats: a link between mitochondrial function and glucose stimulated insulin secretion. Am J Physiol Endocrinol Metab. 2013 May 15; 304(10):E1023–E1034. Epub 2013 Mar 19. doi:10.1152/ ajpendo.00036.2013.

Winder W. W., Hardie D. G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. 1999 Jul; 277(1 Pt 1):E1–E10.

Yan W., et al. Impaired mitochondrial biogenesis due to dysfunctional adiponectin AMPKPGC-1α signaling contributing to increased vulnerability in diabetic heart. Basic Res Cardiol. 2013 May;108(3):329. Epub 2013 Mar 5. doi:10.1007/s00395-013-0329-1.

Ye J. Mechanisms of insulin resistance in obesity. Front Med. 2013 Mar; 7(1):14–24. Epub 2013 Mar 9. doi:10.1007/s11684-013-0262-6.

Индуцированные приемом лекарств повреждения митохондрий и соответствующие болезни

Abdoli N., et al. Mechanisms of the statins’ cytotoxicity in freshly isolated rat hepatocytes. J Biochem Mol Toxicol. 2013 Jun; 27(6):287–94. Epub 2013 Apr 23. doi:10.1002/jbt.21485.

Anedda A., Rial E., González-Barroso M. M. Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels. J Endocrinol. 2008 Oct; 199(1):33–40. Epub 2008 Aug 7. doi:10.1677/ JOE-08-0278.

Balijepalli S., Boyd M. R., Ravindranath V. Inhibition of mitochondrial complex I by haloperidol: the role of thiol oxidation. Neuropharmacology. 1999 Apr; 38(4):567–77. doi:10.1016/S0028-3908(98)00215-9.

Balijepalli S., et al. Protein thiol oxidation by haloperidol results in inhibition of mitochondrial complex I in brain regions: comparison with atypical antipsychotics. Neurochem Int. 2001, 38, 425–35. doi:10.1016/ S0197-0186(00)00108-X.

Beavis A. D. On the inhibition of the mitochondrial inner membrane anion uniporter by cationic amphiphiles and other drugs. J Biol Chem. 1989 Jan 25; 264:1508–15.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация