Книга Эволюция человека. Книга 3. Кости, гены и культура, страница 35. Автор книги Александр Владимирович Марков, Елена Наймарк

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Эволюция человека. Книга 3. Кости, гены и культура»

Cтраница 35

В августе 2012 года в журнале Science появилась долгожданная статья, в которой коллектив палеогенетиков, возглавляемый Сванте Пэабо, сообщил, что удалось радикально повысить качество прочтения денисовского генома (Meyer et al., 2012). Теперь он отсеквенирован со средним покрытием 31 (99,4 % нуклеотидов прочтено не менее 10 раз, 92,9 % – не менее 20) и не уступает по качеству отсеквенированным геномам ныне живущих людей. Правда, это относится лишь к наиболее “осмысленной” части генома, где преобладают уникальные последовательности (а не повторы). Эту часть составляют 1,86 миллиарда пар нуклеотидов из примерно трех миллиардов. Дело в том, что в древних костях ДНК сохраняется в виде коротеньких обрывков длиной в несколько десятков нуклеотидов (а если длина фрагмента больше, то это, скорее всего, современное загрязнение – и для верности такой фрагмент лучше выкинуть из рассмотрения). Если последовательность нуклеотидов в крохотном древнем обрывке не уникальна, то есть встречается в геноме много раз, ее нельзя “картировать” – привязать к какому-то конкретному месту в геноме.

Тем не менее содержательная часть денисовского генома, к которой принадлежат практически все белок-кодирующие гены и важнейшие регуляторные участки, теперь реконструирована с поразительной точностью. Этого удалось добиться благодаря новой методике работы с древней ДНК, которую изобрел первый автор статьи Маттиас Майер. По его словам, “никто не ожидал, что удастся получить такой высококачественный геном древнего человека. Все, включая и меня самого, были поражены результатом”.

Ископаемые кости обычно сильно загрязнены современной ДНК, в основном бактериальной, так что доля подлинной человеческой древней ДНК составляет всего несколько процентов. В фаланге из Денисовой пещеры содержание древней ДНК исключительно высокое (70 %), однако в распоряжении исследователей был лишь крошечный фрагмент этой косточки, поэтому очень важно было ничего не потерять при экстракции.

Изначально палеогенетики пользовались технологиями секвенирования, разработанными для современных организмов. Эти методы ориентированы на работу с молекулами ДНК в их “стандартной” конфигурации, то есть в форме двойной спирали. Однако многие фрагменты древней ДНК, выделенные из ископаемых костей, частично или полностью распадаются на одиночные нити или же одна из нитей двойной спирали оказывается повреждена. До 2012 года в ходе палеогенетических исследований такие фрагменты терялись. Разработанная Майером методика позволяет их поймать и отсеквенировать наряду с обычными, двухнитевыми фрагментами. Для этого к концам одноцепочечных фрагментов древней ДНК присоединяют особые молекулы – “адаптеры” [15]. Адаптер затем служит праймером (затравкой) для синтеза недостающей комплементарной цепи ДНК на матрице исходного одноцепочечного фрагмента, который в итоге становится двухцепочечным, после чего его можно секвенировать стандартными методами. Новая методика позволила на порядок увеличить количество древней ДНК, доступной для секвенирования, что и обеспечило успех предприятия.

Имея настолько качественно прочитанный геном, можно было, не боясь ошибок, сравнивать его с другими. Для сравнения выбрали геномы 11 современных людей (с покрытием от 24 до 33): пяти африканцев, двух европейцев, трех азиатов и южноамериканского индейца. Сравнение всех этих геномов между собой и с геномом денисовской девочки позволило исследователям заключить, что предки сапиенсов и денисовцев отделились друг от друга в промежутке от 700 до 170 тыс. лет назад. Столь низкая точность была связана с тем, что на тот момент имелись очень разные оценки скорости мутирования у людей, а не зная скорость мутирования, нельзя откалибровать “молекулярные часы”, используемые для вычисления времени расхождения популяций. Полной ясности нет и сегодня, хотя понятно, что дата 700 тыс. лет назад гораздо ближе к реальности, чем 170 тыс. лет назад.

Денисовский геном чуть больше похож на геном шимпанзе, чем геномы современных людей: между геномами денисовца и шимпанзе на 1,16 % меньше различий. Это объясняется тем, что у современных людей было больше времени для накопления нейтральных отличий от шимпанзе, чем у денисовской девочки, жившей десятки тысячелетий назад (по последним данным, она жила 76–52 тыс. лет назад, см. раздел “Уточнены датировки археологических находок в Денисовой пещере” выше).

Если скорость накопления изменений в ДНК принять примерно постоянной (допущение, лежащее в основе принципа “молекулярных часов”), то данную величину, 1,16 %, можно использовать для датирования денисовской фаланги. Если предки людей и шимпанзе разделились 6,5 млн лет назад и от этого момента до рождения денисовской девочки прошло на 1,16 % меньше времени, чем до современности, то получается, что возраст находки – примерно 75 тыс. лет. Это была, пожалуй, первая серьезная попытка использовать палеогенетические данные для датировки ископаемых остатков, и на тот момент еще ничего нельзя было сказать о надежности такого метода. Дальнейшие исследования показали, что он работает неплохо.

Анализ подтвердил, что некоторые популяции древних сапиенсов, а именно предки современных папуасов, скрещивались с денисовцами и унаследовали от них до 6 % своей ДНК. В геномах других азиатских народов денисовских примесей тогда не обнаружили (позже выяснилось, что менее значительная, но все же существенная примесь денисовской ДНК есть в геномах жителей Восточной Азии, в том числе китайцев и японцев, а также коренных американцев).

А вот еще один факт, важный с эволюционной точки зрения. Выяснилось, что в геноме папуаса участки денисовского происхождения на Х-хромосоме встречаются реже, чем на остальных хромосомах (аутосомах). Этот факт можно объяснить по-разному. Он может означать, что в гибридизации принимали участие со стороны сапиенсов в основном женщины, а со стороны денисовцев – мужчины. Или же что между двумя популяциями в то время уже существовала частичная генетическая несовместимость и поэтому естественный отбор впоследствии удалил из папуасского генофонда значительную часть денисовских фрагментов Х-хромосомы (известно, что внутригеномные конфликты сильнее проявляются и потому “заметнее” для отбора, если конфликтующие гены сидят на Х-хромосоме, которая у мужчин присутствует в единственном экземпляре – и поэтому все проблемы, какие в ней есть, немедленно проявляются в фенотипе). Последующие исследования подтвердили именно вторую версию.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация