Книга Как победить свой возраст? 8 уникальных способов, которые помогут достичь долголетия, страница 4. Автор книги Алексей Москалев

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Как победить свой возраст? 8 уникальных способов, которые помогут достичь долголетия»

Cтраница 4

Важнейшим продуктом жизнедеятельности клетки являются макромолекулы – органические полимеры, составленные из повторяющихся простых блоков. Например, белки (или протеины) состоят из чередующихся между собой 20 различных аминокислот. В зависимости от длины и состава последовательности аминокислот каждый белок обладает своей особой функцией. Общее количество функций белков огромно. Например, белок гемоглобин переносит кислород, белки коллаген и эластин придают упругость стенке сосуда, кератин – защищает покровы тела от механического повреждения. Есть белки, которые служат переносчиками сигналов между клетками (пептидные гормоны, цитокины) или играют роль приемников таких сигналов (рецепторы). Однако наиболее разнообразны белки-ферменты, которые ускоряют каждый свой аспект метаболизма (образование или расщепление того или иного сахара, аминокислоты, макромолекулы). В отсутствие ферментов биохимические процессы в клетке шли бы в тысячи раз медленнее, если вообще были бы возможны. Иногда ферменты собираются в большие нанофабрики, такие как рибосомы (заведующие сборкой новых белков, согласно инструкциям, поступающим из клеточного ядра), протеасомы (фабрики по утилизации просроченных или избыточных белков), сплайсосомы (наномашины для доработки инструкций – матричных РНК).

На вторых ролях находятся различные РНК (рибонуклеиновые кислоты). Они служат инструкциями для сборки белков (матричные РНК, мРНК), помогают процессу сборки (рибосомальные и транспортные РНК), регулируют образование новых инструкций (микроРНК). С тех пор как были открыты ферментативные возможности некоторых РНК, возникло предположение, что первые «клетки» вообще могли обходиться без белков. РНК кодировала и воспроизводила сама себя. Даже энергетическая валюта клетки – АТФ [38] – является маленьким кусочком РНК.

Как уже упоминалось, необходимые для деятельности клетки инструкции хранятся в ядре. Они записаны в энциклопедии жизни – линейной последовательности молекулы ДНК (дезоксирибонуклеиновая кислота), разбитой на тома – хромосомы. Вся ядерная ДНК человека помещается в 46 хромосомах. Честь иметь свою собственную энциклопедию помимо ядра удостоились митохондрии, и то потому, что они когда-то давно в эволюции произошли от симбиотических [39] альфа-протеобактерий. ДНК хранится в виде знаменитой двойной спирали, или «скрученной лестницы». Вся необходимая клетке информация закодирована в перекладинах этой лестницы, каждая из которых состоит из двух молекул нуклеотидов, азотистых оснований, расположенных строго друг напротив друга. Эти основания – аденин, гуанин, цитозин и тимин – обычно обозначают буквами А, Г, Ц и Т. Основания комплементарны друг другу. Это означает, что А может образовывать пару только с Т, а Г с Ц. Считывая информацию одной цепи ДНК методом секвенирования, вы получите последовательность оснований. Представьте себе эту последовательность как сообщение, написанное с помощью алфавита, в котором всего четыре буквы. Именно это сообщение и определяет поток химических реакций в клетке и, следовательно, особенности организма.

Длина молекулы ДНК, содержащейся в ядре, достигает 2 метров. В то время как само ядро имеет микроскопические размеры. Поэтому ДНК внутри ядра туго упакована при помощи особых белков – гистонов, которые выполняют также регуляторную и защитную роль.

Гены, открытые монахом Грегором Менделем в середине XIX века, на самом деле не что иное, как последовательности пар оснований на «лестнице жизни» – молекуле ДНК, которые кодируют матричные РНК, несущие в себе инструкции по сборке того или иного белка. А геном человека содержит приблизительно 20–25 тысяч генов, кодирующих белок. У высокоорганизованных организмов, в том числе и человека, гены настолько сложно устроены, что в среднем могут кодировать 10 разных белков, что на порядок увеличивает их разнообразие.

Информация, хранящаяся в ДНК, должна быть транслирована с помощью клеточного технического обеспечения в химические процессы в «теле» клетки. Однако ДНК слишком большая и не может покинуть пределы ядра, и тут в дело вступают очень на нее похожие, но гораздо более короткие молекулы – молекулы матричной рибонуклеиновой кислоты (мРНК). Мысленно разрежьте двуспиральную «лестницу» ДНК вдоль на две половины, разъединяя «ступеньки», и замените все молекулы тимина (Т) на химически сходные с ними молекулы урацила (У), сохранив по принципу комплементарности А, Г и Ц, – и вы получите молекулу РНК. Когда необходимо транслировать какой-либо ген в последовательность белка, специальные наномашины (геликазы) «расплетают» участок ДНК, содержащий этот ген. Теперь молекулы РНК-полимераз могут присоединиться к свободным основаниям молекулы ДНК и переписать ген на язык мРНК. В этом случае, так же как и в двойной спирали ДНК, могут образоваться лишь определенные связи. Например, с цитозином (Ц) молекулы ДНК может связаться только гуанин (Г) молекулы РНК, а с аденином (А) – только урацил (У). После того как все основания РНК выстроятся в цепочку вдоль ДНК, из них формируется зрелая мРНК. Сообщение, записанное основаниями РНК, так же относится к исходной молекуле ДНК, как негатив к позитиву. В результате этого процесса информация, содержащаяся в гене ДНК, переписывается на РНК. Данный процесс называется транскрипцией [40] .

Этот класс молекул РНК называется матричными, или информационными РНК (мРНК, или иРНК). Поскольку мРНК намного короче, чем ДНК в хромосоме, они могут проникать через ядерные поры в цитоплазму клетки. Таким образом, мРНК переносят информацию из ядра («руководящего центра») в «тело» клетки.

В «теле» клетки (цитоплазме [41] ) находятся молекулы РНК двух других классов, и они оба играют ключевую роль в сборке молекулы белка, кодируемого геном. Одни из них – рибосомные РНК, или рРНК. Они входят в состав клеточной структуры под названием рибосома [42] . Рибосому можно сравнить с конвейером, на котором происходит сборка белка из аминокислот. Другие находятся в «теле» клетки и называются транспортные РНК, или тРНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой – участок для присоединения аминокислоты. Эти три основания на молекуле тРНК могут связываться с парными им основаниями молекулы мРНК. Каждое из возможных 64 сочетаний трех букв триплетного кода (генетического кода [43] ) кодирует положение в белке одной из 20 аминокислот, либо «знаки препинания», означающие сигнал начала и окончания биосинтеза белка. В процессе сборки белка на рибосоме в одном «окошке» происходит присоединение определенной молекулы тРНК, несущей на себе новую аминокислоту, к молекуле мРНК. В другом «окошке» сидит тРНК с уже синтезированным обрывком белка. На него перекидывается аминокислота из первого «окошка», и цепь белка удлиняется. В конце концов выстроится полная цепочка аминокислот, расположенных в определенном порядке, и почти готовый белок отсоединится от рибосомы. Последовательность аминокислот – это первичная структура белка, которая определена сообщением, записанным на гене молекулы ДНК. Затем этот белок сворачивается, принимая окончательную форму, и может выполнять свою функцию. Иногда для полного созревания к нему нацепляются цепочки сахаров или липиды.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация