Книга Время переменных. Математический анализ в безумном мире, страница 60. Автор книги Бен Орлин

Разделитель для чтения книг в онлайн библиотеке

Онлайн книга «Время переменных. Математический анализ в безумном мире»

Cтраница 60

Время переменных. Математический анализ в безумном мире
XIV. Это твой пес-профессор

● Моя огромная благодарность профессору Тиму Пеннингсу за то, что он уделил свое время (а также поделился газетными вырезками) – таким образом появилась эта глава. Рассказать историю Элвиса – большая честь для меня и моя почетная обязанность.

● Bolt, Michael, and Daniel C. Isaksen. “Dogs Don’t Need Calculus.” College Mathematics Journal 41, no. 10 (January 2010): 10–16. https://www.maa.org/sites/default/files/Bolt2010.pdf.

● “CNN Student News Transcript: September 26, 2008.” http://www.cnn.com/2008/LIVING/studentnews/09/25/transcript.fri/index.html.

● Dickey, Leonid. “Do Dogs Know Calculus of Variations?” College Mathematics Journal 37, no. 1 (January 2006): 20–23. https://www.maa.org/sites/default/files/Dickey-CMJ-2006.pdf.

● “Do Dogs Know Calculus? The Corgi Might.” National Purebred Dog Day, March 15, 2016. https://nationalpurebreddogday.com/dogs-know-calculus-corgi-knows/.

● Minton, Roland, and Timothy J. Pennings. “Do Dogs Know Bifurcations?” College Mathematics Journal 38, no. 5 (November 2007): 356–61. https://www.maa.org/sites/default/iles/pdf/upload_library/22/Polya/minton356.pdf.

● Pennings, Timothy J. “Do Dogs Know Calculus?” College Mathematics Journal 34, no. 3 (May 2003): 178–82. https://www.jstor.org/stable/3595798.

● Perruchet, Pierre, and Jorge Gallego, “Do Dogs Know Related Rates Rather Than Optimization?” College Mathematics Journal 37, no. 1 (January 2006): 16–18. https://www.maa.org/sites/default/files/pdf/mathdl/CMJ/cmj37-1-016-018.pdf.

● Thurber, James. Thurber’s Dogs: A Collection of the Master’s Dogs, Written and Drawn, Real and Imaginary, Living and Long Ago. New York: Simon & Schuster, 1955.


Время переменных. Математический анализ в безумном мире
XV. Посчитаем!

● Арнольд В. И. Гюйгенс и Барроу, Ньютон и Гук. – М.: Наука, 1989. – (Современная математика для студентов).

● Bardi, Jason Socrates. The Calculus Wars.

● Goethe, Norma B.; Philip Beeley, and David Rabouin, eds. G. W. Leibniz, Interrelations between Mathematics and Philosophy. New York: Springer, 2015.

● Grossman, Jane, Michael Grossman, and Robert Katz. The First Systems of Weighted Differential and Integral Calculus. Rockport, MA: Archimedes Foundation, 1980. Цитата из Гаусса находится на странице 187.

● Кафка Ф. Избранное: Сборник: Пер. с нем. / Сост. Е. Кацевой; предисл. Д. Затонского. – М.: Радуга, 1989.

● Wolfram, Stephen. “Dropping In on Gottfried Leibniz.”

Вечности
Время переменных. Математический анализ в безумном мире
XVI. В литературных кругах

● Паскаль Б. Мысли / Пер. с фр., вступ. статья, коммент. Ю. А. Гинзбург. – М.: Изд-во имени Сабашниковых, 1995. – С. 132.

● Dauben, Joseph W. “Chinese Mathematics.” In The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook, edited by Victor Katz, 186–384. Princeton, NJ: Princeton University Press, 2007.

● Донн Дж. Прощание, запрещающее грусть / Пер. И. Бродского. (http://litcult.ru/lyrics.ljubimie-stihi/91).

● Hidetoshi, Fukagawa, and Tony Rothman. Sacred Mathematics: Japanese Temple Geometry. Princeton, NJ: Princeton University Press, 2008.

● Joseph, George Gheverghese. The Crest of the Peacock.

● Ken’ichi, Sato. “Chapter 2: Seki Takakazu.” In Japanese Mathematics in the Edo Period. National Diet Library of Japan, 2011. http://www.ndl.go.jp/math/e/s1/2.html.

● Strogatz, Steven. The Joy of x: A Guided Tour of Math, from One to Infinity. New York: Mariner Books, 2013.

● Шимборска В. Число Пи. https://antipodes.org.au/pr_pi_61.html.


Время переменных. Математический анализ в безумном мире
XVII. Война, мир и интегралы

● Берлин И. История свободы. Россия / Предисл. А. Эткинда. – М.: Новое литературное обозрение, 2001.

● Dirda, Michael. “If the World Could Write…” Washington Post. October 28, 2007. http://www.washingtonpost.com/wp-dyn/content/article/2007/10/25/AR2007102502856.html.

● Толстой Л. Н. Война и мир. Т. 3, 4. – М.: Художественная литература, 1983.


Время переменных. Математический анализ в безумном мире
XVIII. Линия городского горизонта Римана

● Corrigan, Maureen. Leave Me Alone, I’m Reading: Finding and Losing Myself in Books. New York: Random House, 2005.

● Dunham, William. The Calculus Gallery.

● Hamill, Pete. “A New York Writer’s Take on How His City Has Changed,” National Geographic, November 15, 2015. https://www.nationalgeographic.com/new-york-city-skylinetallest-midtown-manhattan/article.html.

● Lindner, Christoph. “New York Vertical: Reflections on the Modern Skyline.” American Studies 47, no. 1 (Spring 2006): 31–52. https://core.ac.uk/download/pdf/148648368.pdf.

● Айн Рэнд. Источник. В 2 т. – М.: Альпина Паблишер, 2020.


Время переменных. Математический анализ в безумном мире
XIX. Великая работа синтеза

● Knill, Oliver. “Some Fundamental Theorems in Mathematics.” Harvard University. http://www.math.harvard.edu/~knill/graphgeometry/papers/fundamental.pdf.

Вход
Поиск по сайту
Ищем:
Календарь
Навигация